Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
12,607 result(s) for "SPECTRUM MANAGEMENT"
Sort by:
Polycentric systems for spectrum management: the case of Indigenous and tribal spectrum sovereignty
We extend the law and economics analysis of spectrum management by considering the economic case for Indigenous and tribal spectrum sovereignty. We use case studies from the United States, Guatemala, Canada, and New Zealand to show that these movements seek a polycentric system of spectrum management that contrasts with the prevailing monocentric systems of spectrum management in which national governments have the primary authority over spectrum governance. Theories of polycentricity and federalism offer insight into the efficiency of Indigenous and tribal spectrum sovereignty as well as polycentric spectrum sovereignty more generally.
Channel assignment based on bee algorithms in multi-hop cognitive radio networks
Spectrum management policies are responsible for poor utilisation of the radio spectrum. By carrying out dynamic spectrum management (DSM), cognitive radio (CR) can increase the radio spectrum in wireless systems efficiently. CR technology accounts for the improvement in the spectrum utilisation significantly. One issue of DSM in CR is the assignment of frequency channels among its users. Herein, a general model and four utility functions for optimal channel assignment in open spectrum systems such as CR networks have been defined. First, a new utility function with a better fairness than the other functions is proposed. Then, two new different channel assignment methods, based on the artificial bee colony (ABC) and bee swarm optimisation (BSO) algorithms, are proposed, whereas other certain evolutionary algorithms and colour sensitive graph colouring (CSGC) are used to compare the performances. In order to decrease the search space, based on the channel availability and interference constraints a mapping process between the channel assignment matrix and the position of the bees has been proposed. Our simulation results, compared to the optimal solutions, show that our algorithms drastically improve network performance by reducing interference.
Multi-Connectivity for 5G Networks and Beyond: A Survey
To manage a growing number of users and an ever-increasing demand for bandwidth, future 5th Generation (5G) cellular networks will combine different radio access technologies (cellular, satellite, and WiFi, among others) and different types of equipment (pico-cells, femto-cells, small-cells, macro-cells, etc.). Multi-connectivity is an emerging paradigm aiming to leverage this heterogeneous architecture. To achieve this, multi-connectivity proposes to enable UE to simultaneously use component carriers from different and heterogeneous network nodes: base stations, WiFi access points, etc. This could offer many benefits in terms of quality of service, energy efficiency, fairness, mobility, and spectrum and interference management. Therefore, this survey aims to present an overview of multi-connectivity in 5G networks and beyond. To do so, a comprehensive review of existing standards and enabling technologies is proposed. Then, a taxonomy is defined to classify the different elements characterizing multi-connectivity in 5G and future networks. Thereafter, existing research works using multi-connectivity to improve the quality of service, energy efficiency, fairness, mobility management, and spectrum and interference management are analyzed and compared. In addition, lessons common to these different contexts are presented. Finally, open challenges for multi-connectivity in 5G networks and beyond are discussed.
Issues, Challenges, and Research Trends in Spectrum Management: A Comprehensive Overview and New Vision for Designing 6G Networks
With an extensive growth in user demand for high throughput, large capacity, and low latency, the ongoing deployment of Fifth-Generation (5G) systems is continuously exposing the inherent limitations of the system, as compared with its original premises. Such limitations are encouraging researchers worldwide to focus on next-generation 6G wireless systems, which are expected to address the constraints. To meet the above demands, future radio network architecture should be effectively designed to utilize its maximum radio spectrum capacity. It must simultaneously utilize various new techniques and technologies, such as Carrier Aggregation (CA), Cognitive Radio (CR), and small cell-based Heterogeneous Networks (HetNet), high-spectrum access (mmWave), and Massive Multiple-Input-Multiple-Output (M-MIMO), to achieve the desired results. However, the concurrent operations of these techniques in current 5G cellular networks create several spectrum management issues; thus, a comprehensive overview of these emerging technologies is presented in detail in this study. Then, the problems involved in the concurrent operations of various technologies for the spectrum management of the current 5G network are highlighted. The study aims to provide a detailed review of cooperative communication among all the techniques and potential problems associated with the spectrum management that has been addressed with the possible solutions proposed by the latest researches. Future research challenges are also discussed to highlight the necessary steps that can help achieve the desired objectives for designing 6G wireless networks.
Intelligent Priority-Aware Spectrum Access in 5G Vehicular IoT: A Reinforcement Learning Approach
Efficient and intelligent spectrum access is crucial for meeting the diverse Quality of Service (QoS) demands of Vehicular Internet of Things (V-IoT) systems in next-generation cellular networks. This work proposes a novel reinforcement learning (RL)-based priority-aware spectrum management (RL-PASM) framework, a centralized self-learning priority-aware spectrum management framework operating through Roadside Units (RSUs). RL-PASM dynamically allocates spectrum resources across three traffic classes: high-priority (HP), low-priority (LP), and best-effort (BE), utilizing reinforcement learning (RL). This work compares four RL algorithms: Q-Learning, Double Q-Learning, Deep Q-Network (DQN), and Actor-Critic (AC) methods. The environment is modeled as a discrete-time Markov Decision Process (MDP), and a context-sensitive reward function guides fairness-preserving decisions for access, preemption, coexistence, and hand-off. Extensive simulations conducted under realistic vehicular load conditions evaluate the performance across key metrics, including throughput, delay, energy efficiency, fairness, blocking, and interruption probability. Unlike prior approaches, RL-PASM introduces a unified multi-objective reward formulation and centralized RSU-based control to support adaptive priority-aware access for dynamic vehicular environments. Simulation results confirm that RL-PASM balances throughput, latency, fairness, and energy efficiency, demonstrating its suitability for scalable and resource-constrained deployments. The results also demonstrate that DQN achieves the highest average throughput, followed by vanilla QL. DQL and AC maintain fairness at high levels and low average interruption probability. QL demonstrates the lowest average delay and the highest energy efficiency, making it a suitable candidate for edge-constrained vehicular deployments. Selecting the appropriate RL method, RL-PASM offers a robust and adaptable solution for scalable, intelligent, and priority-aware spectrum access in vehicular communication infrastructures.
Fine‐grained spectrum map inference: A novel approach based on deep residual network
Spectrum map is a database that stores multidimensional representations of spectrum situation information. It provides support for spectrum sensing and endows wireless communication networks with intelligence. However, the ubiquitous deployment of monitoring devices leads to huge costs of operation and maintenance. It indicates that an approach is needed to reduce the number of monitoring devices, but prevent the degradation of data granularity. Therefore, this paper focuses on the accurate construction of the spectrum map. It aims to infer the fine‐grained spectrum situation of the target region based on coarse‐grained observation. In order to solve this problem, an inference framework based on deep residual network is developed in this paper. In the case of rule deployment for sensing nodes, it adopts the idea of super resolution to improve the accuracy of the spectrum map. The framework is composed of two major parts: an inference network, which generates fine‐grained spectrum maps from coarse‐grained counterparts by using feature extraction module and upsampling construction module; and a fusion network, which considers the influence of environmental factors to further improve the performance. A large number of experiments on simulated datasets verify the effectiveness of the proposed method. This paper aims to infer fine‐grained spectrum situation of the target region based on coarse‐grained observation. It adopts the idea of super resolution and proposes an inference framework based on deep residual network.
Building the Electromagnetic Situation Awareness in MANET Cognitive Radio Networks for Urban Areas
This paper presents a solution for building awareness of the electromagnetic situation in cognitive mobile ad hoc networks (MANET) using the cooperative spectrum sensing method. Signal detection is performed using energy detectors with noise level estimation. Based on the evidence theory, the fusion center decides on the particular channel occupancy, which can process incomplete and unambiguous input data. Next, a reinforced machine learning algorithm estimates the usefulness of particular channels for the MANET transmission and creates backup channels list that could be used in case of interferences. Initial simulations were performed using the MATLAB environment, and next an OMNET-based MAENA high fidelity simulator was used. Performed simulations showed a significant increase in sensing efficiency compared to sensing performed using simple data fusion rules.
Modeling and Performance Analysis of Opportunistic Link Selection for UAV Communication
In anticipation of wide implementation of 5G technologies, the scarcity of spectrum resources for the unmanned aerial vehicles (UAVs) communication remains one of the major challenges in arranging safe drone operations. Dynamic spectrum management among multiple UAVs as a tool that is able to address this issue, requires integrated solutions with considerations of heterogeneous link types and support of the multi-UAV operations. This paper proposes a synthesized resource allocation and opportunistic link selection (RA-OLS) scheme for the air-to-ground (A2G) UAV communication with dynamic link selections. The link opportunities using link hopping sequences (LHSs) are allocated in the GCSs for alleviating the internal collisions within the UAV network, offloading the on-board computations in the spectrum processing function, and avoiding the contention in the air. In this context, exclusive technical solutions are proposed to form the prototype system. A sub-optimal allocation method based on the greedy algorithm is presented for addressing the resource allocation problem. A mathematical model of the RA-OLS throughput with above propositions is formulated for the spectrum dense and scarce environments. An interference factor is introduced to measure the protection effects on the primary users. The proposed throughput model approximates the simulated communication under requirements of small errors in the spectrum dense environment and the spectrum scarce environment, where the sensitivity analysis is implemented. The proposed RA-OLS outperforms the static communication scheme in terms of the utilization rate by over 50% in case when multiple links are available. It also enables the collaborative communication when the spectral resources are in scarcity. The impacts from diverse parameters on the RA-OLS communication performance are analyzed.
Lightweight Reinforcement Learning for Priority-Aware Spectrum Management in Vehicular IoT Networks
The Vehicular Internet of Things (V-IoT) has emerged as a cornerstone of next-generation intelligent transportation systems (ITSs), enabling applications ranging from safety-critical collision avoidance and cooperative awareness to infotainment and fleet management. These heterogeneous services impose stringent quality-of-service (QoS) demands for latency, reliability, and fairness while competing for limited and dynamically varying spectrum resources. Conventional schedulers, such as round-robin or static priority queues, lack adaptability, whereas deep reinforcement learning (DRL) solutions, though powerful, remain computationally intensive and unsuitable for real-time roadside unit (RSU) deployment. This paper proposes a lightweight and interpretable reinforcement learning (RL)-based spectrum management framework for Vehicular Internet of Things (V-IoT) networks. Two enhanced Q-Learning variants are introduced: a Value-Prioritized Action Double Q-Learning with Constraints (VPADQ-C) algorithm that enforces reliability and blocking constraints through a Constrained Markov Decision Process (CMDP) with online primal–dual optimization, and a contextual Q-Learning with Upper Confidence Bound (Q-UCB) method that integrates uncertainty-aware exploration and a Success-Rate Prior (SRP) to accelerate convergence. A Risk-Aware Heuristic baseline is also designed as a transparent, low-complexity benchmark to illustrate the interpretability–performance trade-off between rule-based and learning-driven approaches. A comprehensive simulation framework incorporating heterogeneous traffic classes, physical-layer fading, and energy-consumption dynamics is developed to evaluate throughput, delay, blocking probability, fairness, and energy efficiency. The results demonstrate that the proposed methods consistently outperform conventional Q-Learning and Double Q-Learning methods. VPADQ-C achieves the highest energy efficiency (≈8.425×107 bits/J) and reduces interruption probability by over 60%, while Q-UCB achieves the fastest convergence (within ≈190 episodes), lowest blocking probability (≈0.0135), and lowest mean delay (≈0.351 ms). Both schemes maintain fairness near 0.364, preserve throughput around 28 Mbps, and exhibit sublinear training-time scaling with O(1) per-update complexity and O(N2) overall runtime growth. Scalability analysis confirms that the proposed frameworks sustain URLLC-grade latency (<0.2 ms) and reliability under dense vehicular loads, validating their suitability for real-time, large-scale V-IoT deployments.
Enhanced spectrum sensing for 5G and LTE signals using advanced deep learning models and hyperparameter tuning
This paper introduces a novel approach to enhancing spectrum sensing accuracy for 5G and LTE signals using advanced deep learning models, with a particular focus on the impact of systematic hyperparameter tuning. By leveraging state-of-the-art neural network architecture, namely DenseNet121 and InceptionV3—the study aims to overcome the limitations of traditional spectrum sensing methods in highly dynamic and noisy wireless environments. The research highlights that, through rigorous hyperparameter optimization, these models achieved substantial improvements in detection accuracy, reaching 97.3% and 98.2%, respectively, compared to initial performance levels of 93.0% and 95.0%. These performance improvements were particularly notable in controlled scenarios where low signal-to-noise ratio frames were excluded, with 60% of frames containing little or no information—highlighting the critical role of signal quality in both training and evaluation. It is worth noting that the models were trained and tested on a large and diverse dataset, including synthetic signals and real-world data, simulating a wide range of practical deployment conditions. This comprehensive database supports the generalizability of the proposed approach and its real-world applicability. The study also confirms that the models demonstrated competitive performance in various test scenarios, and that their integration into future wireless systems could significantly enhance smart spectrum management and real-time communication reliability in modern networks.