Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "SR Ca2 leak"
Sort by:
The functional consequences of sodium channel NaV1.8 in human left ventricular hypertrophy
Aims In hypertrophy and heart failure, the proarrhythmic persistent Na+ current (INaL) is enhanced. We aimed to investigate the electrophysiological role of neuronal sodium channel NaV1.8 in human hypertrophied myocardium. Methods and results Myocardial tissue of 24 patients suffering from symptomatic severe aortic stenosis and concomitant significant afterload‐induced hypertrophy with preserved ejection fraction was used and compared with 12 healthy controls. We performed quantitative real‐time PCR and western blot and detected a significant up‐regulation of NaV1.8 mRNA (2.34‐fold) and protein expression (1.96‐fold) in human hypertrophied myocardium compared with healthy hearts. Interestingly, NaV1.5 protein expression was significantly reduced in parallel (0.60‐fold). Using whole‐cell patch‐clamp technique, we found that the prominent INaL was significantly reduced after addition of novel NaV1.8‐specific blockers either A‐803467 (30 nM) or PF‐01247324 (1 μM) in human hypertrophic cardiomyocytes. This clearly demonstrates the relevant contribution of NaV1.8 to this proarrhythmic current. We observed a significant action potential duration shortening and performed confocal microscopy, demonstrating a 50% decrease in proarrhythmic diastolic sarcoplasmic reticulum (SR)‐Ca2+ leak and SR‐Ca2+ spark frequency after exposure to both NaV1.8 inhibitors. Conclusions We show for the first time that the neuronal sodium channel NaV1.8 is up‐regulated on mRNA and protein level in the human hypertrophied myocardium. Furthermore, inhibition of NaV1.8 reduced augmented INaL, abbreviated the action potential duration, and decreased the SR‐Ca2+ leak. The findings of our study suggest that NaV1.8 could be a promising antiarrhythmic therapeutic target and merits further investigation.
Ca2+/calmodulin‐dependent kinase IIδC‐induced chronic heart failure does not depend on sarcoplasmic reticulum Ca2+ leak
Aims Hyperactivity of Ca2+/calmodulin‐dependent protein kinase II (CaMKII) has emerged as a central cause of pathologic remodelling in heart failure. It has been suggested that CaMKII‐induced hyperphosphorylation of the ryanodine receptor 2 (RyR2) and consequently increased diastolic Ca2+ leak from the sarcoplasmic reticulum (SR) is a crucial mechanism by which increased CaMKII activity leads to contractile dysfunction. We aim to evaluate the relevance of CaMKII‐dependent RyR2 phosphorylation for CaMKII‐induced heart failure development in vivo. Methods and results We crossbred CaMKIIδC overexpressing [transgenic (TG)] mice with RyR2‐S2814A knock‐in mice that are resistant to CaMKII‐dependent RyR2 phosphorylation. Ca2+‐spark measurements on isolated ventricular myocytes confirmed the severe diastolic SR Ca2+ leak previously reported in CaMKIIδC TG [4.65 ± 0.73 mF/F0 vs. 1.88 ± 0.30 mF/F0 in wild type (WT)]. Crossing in the S2814A mutation completely prevented SR Ca2+‐leak induction in the CaMKIIδC TG, both regarding Ca2+‐spark size and frequency, demonstrating that the CaMKIIδC‐induced SR Ca2+ leak entirely depends on the CaMKII‐specific RyR2‐S2814 phosphorylation. Yet, the RyR2‐S2814A mutation did not affect the massive contractile dysfunction (ejection fraction = 12.17 ± 2.05% vs. 45.15 ± 3.46% in WT), cardiac hypertrophy (heart weight/tibia length = 24.84 ± 3.00 vs. 9.81 ± 0.50 mg/mm in WT), or severe premature mortality (median survival of 12 weeks) associated with cardiac CaMKIIδC overexpression. In the face of a prevented SR Ca2+ leak, the phosphorylation status of other critical CaMKII downstream targets that can drive heart failure, including transcriptional regulator histone deacetylase 4, as well as markers of pathological gene expression including Xirp2, Il6, and Col1a1, was equally increased in hearts from CaMKIIδC TG on a RyR WT and S2814A background. Conclusions S2814 phosphoresistance of RyR2 prevents the CaMKII‐dependent SR Ca2+ leak induction but does not prevent the cardiomyopathic phenotype caused by enhanced CaMKIIδC activity. Our data indicate that additional mechanisms—independent of SR Ca2+ leak—are critical for the maladaptive effects of chronically increased CaMKIIδC activity with respect to heart failure.
Phosphorylation of RyR2 Ser‐2814 by CaMKII mediates β1‐adrenergic stress induced Ca2+‐leak from the sarcoplasmic reticulum
Adrenergic stimulation, while being the central mechanism of cardiac positive inotropy, is a universally acknowledged inductor of undesirable sarcoplasmic reticulum (SR) Ca2+ leak. However, the exact mechanisms for this remained unspecified so far. This study shows that Ca2+/calmodulin‐dependent protein kinase II (CaMKII)‐specific phosphorylation of ryanodine receptor type 2 at Ser‐2814 is the pivotal mechanism by which SR Ca2+ leak develops downstream of β1‐adrenergic stress by increase of the leak/load relationship. Cardiomyocytes with a Ser‐2814 phosphoresistant mutation (S2814A) were protected from isoproterenol‐induced SR Ca2+ leak and consequently displayed improved postrest potentiation of systolic Ca2+ release under adrenergic stress compared to littermate wild‐type cells. This study shows that Ca2+/calmodulin‐dependent protein kinase II‐specific phosphorylation of ryanodine receptor type 2 at Ser‐2814 is the pivotal mechanism by which sarcoplasmic reticulum Ca2+ leak develops downstream of β1‐adrenergic stress by increase of the leak/load relationship.
Ca2+ leak through ryanodine receptor 1 regulates thermogenesis in resting skeletal muscle
Mammals rely on nonshivering thermogenesis (NST) from skeletal muscle so that cold temperatures can be tolerated. NST results from activity of the sarcoplasmic reticulum (SR) Ca2+ pump in skeletal muscle, but the mechanisms that regulate this activity are unknown. Here, we develop a single-fiber assay to investigate the role of Ca2+ leak through ryanodine receptor 1 (RyR1) to generate heat at the SR Ca2+ pump in resting muscle. By inhibiting a subpopulation of RyR1s in a single-fiber preparation via targeted delivery of ryanodine through transverse tubules, we achieve in-preparation isolation of RyR1 Ca2+ leak. This maneuver provided a critical increase in signal-to-noise of the SR-temperature-sensitive dye ER thermoyellow fluorescence signal from the fiber to allow detection of SR temperature changes as either RyR1 or SR Ca2+ pump activity was altered. We found that RyR1 Ca2+ leak raises cytosolic [Ca2+] in the local vicinity of the SR Ca2+ pump to amplify thermogenesis. Furthermore, gene-dose-dependent increases in RyR1 leak in RYR1 mutant mice result in progressive rises in leak-dependent heat, consistent with raised local [Ca2+] at the SR Ca2+ pump via RyR1 Ca2+ leak. We also show that basal RyR Ca2+ leak and the heat generated by the SR Ca2+ pump in the absence of RyR Ca2+ leak is greater in fibers from mice than from toads. The distinct function of RyRs and SR Ca2+ pump in endothermic mammals compared to ectothermic amphibians provides insights into the mechanisms by which mammalian skeletal muscle achieves thermogenesis at rest.
Protein kinase/phosphatase balance mediates the effects of increased late sodium current on ventricular calcium cycling
Increased late sodium current (late INa) is an important arrhythmogenic trigger in cardiac disease. It prolongs cardiac action potential and leads to an increased SR Ca2+ leak. This study investigates the contribution of Ca2+/Calmodulin-dependent kinase II (CaMKII), protein kinase A (PKA) and conversely acting protein phosphatases 1 and 2A (PP1, PP2A) to this subcellular crosstalk. Augmentation of late INa (ATX-II) in murine cardiomyocytes led to an increase of diastolic Ca2+ spark frequency and amplitudes of Ca2+ transients but did not affect SR Ca2+ load. Interestingly, inhibition of both, CaMKII and PKA, attenuated the late INa-dependent induction of the SR Ca2+ leak. PKA inhibition additionally reduced the amplitudes of systolic Ca2+ transients. FRET-measurements revealed increased levels of cAMP upon late INa augmentation, which could be prevented by simultaneous inhibition of Na+/Ca2+-exchanger (NCX) suggesting that PKA is activated by Ca2+-dependent cAMP-production. Whereas inhibition of PP2A showed no effect on late INa-dependent alterations of Ca2+ cycling, additional inhibition of PP1 further increased the SR Ca2+ leak. In line with this, selective activation of PP1 yielded a strong reduction of the late INa-induced SR Ca2+ leak and did not affect systolic Ca2+ release. This study indicates that phosphatase/kinase-balance is perturbed upon increased Na+ influx leading to disruption of ventricular Ca2+ cycling via CaMKII- and PKA-dependent pathways. Importantly, an activation of PP1 at RyR2 may represent a promising new toehold to counteract pathologically increased kinase activity.
Myofiber structure, sarcoplasmic reticulum Ca2+ handling, and contractile function after muscle‐damaging exercise in humans
Exercise‐induced muscle damage (EIMD) is characterized by a severe and prolonged decline in force‐generating capacity. However, the precise cellular mechanisms underlying the observed long‐lasting decline in force‐generating capacity associated with EIMD are still unclear. We investigated in vivo force generation and ex vivo Ca2+‐activated force generation, Ca2+ sensitivity, and myofiber Ca2+ handling systems (SR and t‐tubules) in human biceps brachii before and 2, 48, and 96 h after eccentrically muscle‐damaging contractions and in non‐exercised control arm. The force‐generating capacity declined by 50 ± 13% 3 h after exercise and was still not recovered after 96 h. The force‐Ca relationship of skinned myofibers revealed an impaired maximal Ca2+‐activated force in MHC I‐fibers, but not MHC II‐fibers 48 h after exercise. Further, Ca2+ sensitivity was increased in MHC II‐fibers, which was reversed after incubation with a strong reductant. There was a biphasic increase in SERCA sulfonylation, and a parallel reduction in the SR Ca2+ uptake rate, with no effects on SR vesicle leak or SR vesicle Ca2+ release rate. T‐tubules showed a progressive increase in the density of longitudinal tubules by 96 h after exercise. In conclusion, MHC II‐fiber Ca2+ sensitivity was increased 48 h after exercise, attributed to changes in the REDOX status. 96 h after exercise SR vesicle Ca2+ uptake was impaired, and an increased number of longitudinal tubules were observed. These alterations may contribute to the impaired force generation evident at the late stage of recovery. Alterations in myofiber Ca2+ handling systems after eccentrically, damaging exercise. Created in https://BioRender.com.