Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
31,866 result(s) for "STATISTICAL INFERENCE"
Sort by:
High-Dimensional Inference: Confidence Intervals, p-Values and R-Software hdi
We present a (selective) review of recent frequentist high-dimensional inference methods for constructing p-values and confidence intervals in linear and generalized linear models. We include a broad, comparative empirical study which complements the viewpoint from statistical methodology and theory. Furthermore, we introduce and illustrate the R-package hdi which easily allows the use of different methods and supports reproducibility.
Consensus-Based Linguistic Distribution Large-Scale Group Decision Making Using Statistical Inference and Regret Theory
Large-scale group decision-making (LSGDM) deals with complex decision- making problems which involve a large number of decision makers (DMs). Such a complex scenario leads to uncertain contexts in which DMs elicit their knowledge using linguistic information that can be modelled using different representations. However, current processes for solving LSGDM problems commonly neglect a key concept in many real-world decision-making problems, such as DMs’ regret aversion psychological behavior. Therefore, this paper introduces a novel consensus based linguistic distribution LSGDM (CLDLSGDM) approach based on a statistical inference principle that considers DMs’ regret aversion psychological characteristics using regret theory and which aims at obtaining agreed solutions. Specifically, the CLDLSGDM approach applies the statistical inference principle to the consensual information obtained in the consensus process, in order to derive the weights of DMs and attributes using the consensus matrix and adjusted decision-making matrices to solve the decision-making problem. Afterwards, by using regret theory, the comprehensive perceived utility values of alternatives are derived and their ranking determined. Finally, a performance evaluation of public hospitals in China is given as an example in order to illustrate the implementation of the designed method. The stability and advantages of the designed method are analyzed by a sensitivity and a comparative analysis.
Statistical Evidence in Experimental Psychology: An Empirical Comparison Using 855 t Tests
Statistical inference in psychology has traditionally relied heavily on p-value significance testing. This approach to drawing conclusions from data, however, has been widely criticized, and two types of remedies have been advocated. The first proposal is to supplement p values with complementary measures of evidence, such as effect sizes. The second is to replace inference with Bayesian measures of evidence, such as the Bayes factor. The authors provide a practical comparison of p values, effect sizes, and default Bayes factors as measures of statistical evidence, using 855 recently published t tests in psychology. The comparison yields two main results. First, although p values and default Bayes factors almost always agree about what hypothesis is better supported by the data, the measures often disagree about the strength of this support; for 70% of the data sets for which the p value falls between .01 and .05, the default Bayes factor indicates that the evidence is only anecdotal. Second, effect sizes can provide additional evidence to p values and default Bayes factors. The authors conclude that the Bayesian approach is comparatively prudent, preventing researchers from overestimating the evidence in favor of an effect.
Extracorporeal cardiopulmonary resuscitation versus standard treatment for refractory out-of-hospital cardiac arrest: a Bayesian meta-analysis
Background The outcomes of several randomized trials on extracorporeal cardiopulmonary resuscitation (ECPR) in patients with refractory out-of-hospital cardiac arrest were examined using frequentist methods, resulting in a dichotomous interpretation of results based on p-values rather than in the probability of clinically relevant treatment effects. To determine such a probability of a clinically relevant ECPR-based treatment effect on neurological outcomes, the authors of these trials performed a Bayesian meta-analysis of the totality of randomized ECPR evidence. Methods A systematic search was applied to three electronic databases. Randomized trials that compared ECPR-based treatment with conventional CPR for refractory out-of-hospital cardiac arrest were included. The study was preregistered in INPLASY (INPLASY2023120060). The primary Bayesian hierarchical meta-analysis estimated the difference in 6-month neurologically favorable survival in patients with all rhythms, and a secondary analysis assessed this difference in patients with shockable rhythms (Bayesian hierarchical random-effects model). Primary Bayesian analyses were performed under vague priors. Outcomes were formulated as estimated median relative risks, mean absolute risk differences, and numbers needed to treat with corresponding 95% credible intervals (CrIs). The posterior probabilities of various clinically relevant absolute risk difference thresholds were estimated. Results Three randomized trials were included in the analysis (ECPR, n = 209 patients; conventional CPR, n = 211 patients). The estimated median relative risk of ECPR for 6-month neurologically favorable survival was 1.47 (95%CrI 0.73–3.32) with a mean absolute risk difference of 8.7% (− 5.0; 42.7%) in patients with all rhythms, and the median relative risk was 1.54 (95%CrI 0.79–3.71) with a mean absolute risk difference of 10.8% (95%CrI − 4.2; 73.9%) in patients with shockable rhythms. The posterior probabilities of an absolute risk difference > 0% and > 5% were 91.0% and 71.1% in patients with all rhythms and 92.4% and 75.8% in patients with shockable rhythms, respectively. Conclusion The current Bayesian meta-analysis found a 71.1% and 75.8% posterior probability of a clinically relevant ECPR-based treatment effect on 6-month neurologically favorable survival in patients with all rhythms and shockable rhythms. These results must be interpreted within the context of the reported credible intervals and varying designs of the randomized trials. Registration INPLASY (INPLASY2023120060, December 14th, 2023, https://doi.org/10.37766/inplasy2023.12.0060 ).
Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality
We derive the asymptotic sampling distribution of various estimators frequently used to order distributions in terms of poverty, welfare, and inequality. This includes estimators of most of the poverty indices currently in use, as well as estimators of the curves used to infer stochastic dominance of any order. These curves can be used to determine whether poverty, inequality, or social welfare is greater in one distribution than in another for general classes of indices and for ranges of possible poverty lines. We also derive the sampling distribution of the maximal poverty lines up to which we may confidently assert that poverty is greater in one distribution than in another. The sampling distribution of convenient dual estimators for the measurement of poverty is also established. The statistical results are established for deterministic or stochastic poverty lines as well as for paired or independent samples of incomes. Our results are briefly illustrated using data for four countries drawn from the Luxembourg Income Study data bases.
Local dependence in random graph models: characterization, properties and statistical inference
Dependent phenomena, such as relational, spatial and temporal phenomena, tend to be characterized by local dependence in the sense that units which are close in a well‐defined sense are dependent. In contrast with spatial and temporal phenomena, though, relational phenomena tend to lack a natural neighbourhood structure in the sense that it is unknown which units are close and thus dependent. Owing to the challenge of characterizing local dependence and constructing random graph models with local dependence, many conventional exponential family random graph models induce strong dependence and are not amenable to statistical inference. We take first steps to characterize local dependence in random graph models, inspired by the notion of finite neighbourhoods in spatial statistics and M‐dependence in time series, and we show that local dependence endows random graph models with desirable properties which make them amenable to statistical inference. We show that random graph models with local dependence satisfy a natural domain consistency condition which every model should satisfy, but conventional exponential family random graph models do not satisfy. In addition, we establish a central limit theorem for random graph models with local dependence, which suggests that random graph models with local dependence are amenable to statistical inference. We discuss how random graph models with local dependence can be constructed by exploiting either observed or unobserved neighbourhood structure. In the absence of observed neighbourhood structure, we take a Bayesian view and express the uncertainty about the neighbourhood structure by specifying a prior on a set of suitable neighbourhood structures. We present simulation results and applications to two real world networks with ‘ground truth’.
Instability, Sensitivity, and Degeneracy of Discrete Exponential Families
A number of discrete exponential family models for dependent data, first and foremost relational data, have turned out to be near-degenerate and problematic in terms of Markov chain Monte Carlo (MCMC) simulation and statistical inference. I introduce the notion of instability with an eye to characterize, detect, and penalize discrete exponential family models that are near-degenerate and problematic in terms of MCMC simulation and statistical inference. I show that unstable discrete exponential family models are characterized by excessive sensitivity and near-degeneracy. In special cases, the subset of the natural parameter space corresponding to nondegenerate distributions and mean-value parameters far from the boundary of the mean-value parameter space turns out to be a lower-dimensional subspace of the natural parameter space. These characteristics of unstable discrete exponential family models tend to obstruct MCMC simulation and statistical inference. In applications to relational data, I show that discrete exponential family models with Markov dependence tend to be unstable, and that the parameter space of some curved exponential families contains unstable subsets.
Lossless Transformations and Excess Risk Bounds in Statistical Inference
We study the excess minimum risk in statistical inference, defined as the difference between the minimum expected loss when estimating a random variable from an observed feature vector and the minimum expected loss when estimating the same random variable from a transformation (statistic) of the feature vector. After characterizing lossless transformations, i.e., transformations for which the excess risk is zero for all loss functions, we construct a partitioning test statistic for the hypothesis that a given transformation is lossless, and we show that for i.i.d. data the test is strongly consistent. More generally, we develop information-theoretic upper bounds on the excess risk that uniformly hold over fairly general classes of loss functions. Based on these bounds, we introduce the notion of a δ-lossless transformation and give sufficient conditions for a given transformation to be universally δ-lossless. Applications to classification, nonparametric regression, portfolio strategies, information bottlenecks, and deep learning are also surveyed.
Effects of Atmospheric Correction on Remote Sensing Statistical Inference in an Aquatic Environment
Atmospheric correction (AC) plays a critical role in the preprocessing of remote sensing images. Although AC is necessary for applications based on remote sensing inversion, it is not always required for those based on remote sensing classification. Recently, remote sensing statistical inference has been proposed for evaluating water quality. However, input data for these models have always been remote sensing reflectance (Rrs), which requires AC. This raises the question of whether AC is necessary for remote sensing statistical inference. We conducted a theoretical analysis and image validations by testing 24 water bodies observed by Landsat-8 and compared their spectral probability distributions (SPDs) calculated from Rrs before and after AC (using the ACOLITE model). Additionally, we tested and found that, if we use remote sensing inference as a tool to quantitatively infer statistical parameters of a specific waterbody, it is better to perform atmospheric correction. However, if the quantitative inference is applied to a large number of water bodies and high inference accuracy is not required, atmospheric correction may not be necessary, and a quick calculation based on the strong correlations between Rrs at the surface and sensor-observed reflectance can be used as a substitute.
Intuitive statistics by 8-month-old infants
Human learners make inductive inferences based on small amounts of data: we generalize from samples to populations and vice versa. The academic discipline of statistics formalizes these intuitive statistical inferences. What is the origin of this ability? We report six experiments investigating whether 8-month-old infants are \"intuitive statisticians.\" Our results showed that, given a sample, the infants were able to make inferences about the population from which the sample had been drawn. Conversely, given information about the entire population of relatively small size, the infants were able to make predictions about the sample. Our findings provide evidence that infants possess a powerful mechanism for inductive learning, either using heuristics or basic principles of probability. This ability to make inferences based on samples or information about the population develops early and in the absence of schooling or explicit teaching. Human infants may be rational learners from very early in development.