Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "STM-ESR"
Sort by:
On the magnetic bistability of small iron clusters used in scanning tunneling microscopy tip preparation
The combination of electron spin resonance with scanning tunneling microscopy has resulted in a unique surface probe with sub-nm spatial and neV energy resolution. The preparation of a stable magnetic microtip is of central importance, yet, at the same time remains one of the hardest tasks. In this work, we rationalize why creating such microtips by picking up a few iron atoms often results in magnetically stable probes with two distinct magnetic states. By using density functional theory, we show that randomly formed clusters of five iron atoms can exhibit this behavior with magnetic anisotropy barriers of up to 73 meV. We explore the dependence of the magnetic behavior of such clusters on the geometrical arrangement and find a strong correlation between magnetic and geometric anisotropy—the less regular the cluster the higher its magnetic anisotropy barrier. Finally, our work rationalizes the experimental strategy of obtaining stable magnetic microtips.