Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "SWAT-MODFLOW coupling model"
Sort by:
Study on the relationship between surface water and groundwater transformation in the middle and lower reaches of Songhua river basin
To precisely delineate the transformation dynamics across several temporal and spatial scales in the middle and lower portions of the Songhua River basin in Heilongjiang Province, China, characterized by numerous irrigation zones and frequent transitions from surface water to groundwater. The SWAT-MODLFOW model, developed on the QSWATMOD2 platform, was validated using river runoff data and groundwater level observations. Consequently, the delay of precipitation on groundwater levels and the correlation between surface water and groundwater dynamics in the middle and lower portions of the Songhua River basin were modeled. The findings indicate: (1) The coefficient of calibration and Nash coefficient for monthly runoff during the calibration and validation periods yielded R 2  ≥ 0.86, NSE ≥ 0.87, R 2  ≥ 0.76, and NSE ≥ 0.77, respectively. Furthermore, the discrepancy between the simulated and actual groundwater table values is within 0.6 m, with R² values of 0.97 and 0.98 for the periodic and verification phases, respectively. The simulation outcomes of this test model are satisfactory and fulfill the criteria for scientific research. (2) The groundwater level in the research area typically declines from west-northwest to northeast and from south to east. The groundwater level lag time influenced by precipitation in Jiamusi, Fujin, and Tongjiang cities is around 10.56 days, 10.58 days, and 3.15 days, respectively. (3) The river channels facilitating surface water recharge to groundwater constitute 41.75% of the entire length of the Jiamusi-Tongjiang stretch of the Songhua River, with the annual average recharge representing 50.84% of the total exchanged water. Seasonally, the peak recharge value for each river section occurred in August, while the lowest recharge value was recorded in April. The peak recharge happened in 2009, while the lowest recharge was in 2014. The contribution of groundwater to surface water exhibits significant fluctuations, with seasonal variance between − 52% and 55%, and inter-annual variation between − 35% and 52%.
Evaluating Spatiotemporal Variations of Groundwater–Surface Water Interaction Using an Integrated Hydrological Model in Huashan Basin, China
Quantifying the spatiotemporal variations of basin-scale surface water (SW)–groundwater (GW) interactions is vital for the conjunctive management of water resources in the basin. In this study, an integrated hydrological model (SWAT-MODFLOW) is used to simulate the SW–GW system in the Huashan Basin. The numerical model was calibrated and validated using the streamflow observations of the watershed outlet and the groundwater levels of the long-term monitoring wells from 2016 to 2020 in the study area. The model results show that the SWAT–MODFLOW can achieve a better fit for the streamflow discharge, compared with the results in the single SWAT model, with R2 (coefficient of correlation) and NSE (Nash-Sutcliffe efficiency coefficient) of 0.85 and 0.83, respectively. The water table fitting results indicate that R2 and RMSE can reach 0.95 and 0.88, respectively. The water budgets analysis demonstrates that the average rate (0.5281 m3/s) of GW abstraction to SW is larger than the rate (0.1289 m3/s) of SW recharge to GW. Moreover, the exchange rate of SW and GW gradually reaches a peak value from June to August, and the lowest value is shown in April, for each hydrological year. Based on the IPPC6 CanESM5 dataset supplied by the Canadian Climate Centre, the regional precipitation scenario subject to climate change was predicted by the ASD (Auto Statistical Downscaling Model) a statistical downscaling method, under the climate scenarios of SSP2_4.5 and SSP5_8.5. The SW–GW interaction pattern was modeled under the future scenarios in the study area. The current (2016–2020) average annual rate of the SW–GW interaction is considered as the base value. Subject to the SSP2_4.5 scenario, the average exchange rate of the SW recharge to GW is 0.1583 m3/s, which is an increase of 22.8%. The average exchange rate of the GW discharge to SW is 0.5189 m3/s which is a reduction of 0.017%. Subject to the SSP5_8.5 scenario, the average exchange rate of SW recharge to GW is 0.1469 m3/s, which is an increase of 14.7%. The average exchange rate of the GW discharge to SW is 0.5953 m3/s, which is an increases of 12.7%. The results can assist in water resource management in the basin, by identifying potential locations of nutrient transport from the aquifer to the river, as well as changes in spatial variability under future climatic conditions.
Modeling the spatio-temporal flow dynamics of groundwater-surface water interactions of the Lake Tana Basin, Upper Blue Nile, Ethiopia
The Ethiopian government has selected Lake Tana basin as a development corridor due to its water resources potential. However, combined use of groundwater (GW) and surface water (SW) is still inadequate due to knowledge gaps about the flow dynamics of GW and SW. Mostly, there is no information about groundwater use. Therefore, this study aims to investigate the dynamics of GW-SW interactions on a spatio-temporal basis in three of the main catchments (Gilgelabay, Gumara and Ribb) that drain into Lake Tana. To this end, the SWAT-MODFLOW model, which is an integration of SWAT (Soil and Water assessment Tool) and MODFLOW, is used. The results reveal strong hydraulic connection between the GW and SW in all the three catchments. In the Gilgelabay catchment, the flow from the aquifer to the river reaches dominates (annual discharge from the aquifer varies from 170 to 525,000 m3/day), whereas in Gumara (annual exchange rate between −6,530 and 1,710 m3/day) and Ribb (annual exchange rate between −8,020 and 1,453 m3/day) the main flow from the river reaches to the aquifer system. The flow pattern differs in the three catchments due to variations of the aquifer parameters and morphological heterogeneity. Overall, this study improves our understanding of GW-SW flow dynamics and provides insights for future research works and sustainable water management in the Nile region.
A New Socio-Hydrology System Based on System Dynamics and a SWAT-MODFLOW Coupling Model for Solving Water Resource Management in Nanchang City, China
To address the issue of seasonal water resource shortages in Nanchang City, a multi-system coupling socio-hydrology simulation method was proposed. This approach involves dynamically integrating a centralized socio-economic model with a distributed surface water groundwater numerical model to explore the intricate relationships between the socio-economic system, the surface water–groundwater integrated system, and the outcomes related to seasonal water resource shortages. Taking Nanchang City as an example, this study conducted research on the water resource supply and demand balance, as well as the groundwater emergency supply, using the multi-system coupling model. Three scenarios were established: status quo, developing, and water-saving. The results show that with the increasing total water demand of social and economic development, the severity of the water resource shortage will be most pronounced in 2030. The minimum water resources supply and demand ratios for the status quo, developing, and water-saving scenarios are projected to be 0.68, 0.52, and 0.77, respectively. To meet residents’ water needs during drought conditions, emergency groundwater supply efforts are investigated. According to the simulation results, groundwater emergency supply would increase the total population by 24.0 thousand, 49.4 thousand, and 11.2 thousand people, respectively, in the status quo, developing, and water-saving scenarios. In the water-saving scenario, the Youkou and Xiebu water sources can serve as suitable emergency water sources. In the status quo scenario, the Youkou water source is the most viable emergency water source. However, in the developing scenario, relying solely on any single water source for emergency supply could have an irreversible impact on the aquifer. Therefore, considering the simultaneous use of multiple water sources is recommended, as it can fulfill water demands while ensuring the sustainable utilization of groundwater resources.