Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
42 result(s) for "Sablefish"
Sort by:
Sablefish
Plasma biochemistry and hematology reference intervals are integral health assessment tools in all medical fields, including aquatic animal health. As sablefish (Anoplopoma fimbria) are becoming aquaculturally and economically more important, this manuscript provides essential reference intervals (RI) for their plasma biochemistry and hematology along with reference photomicrographs of blood cells in healthy, fasted sablefish. Blood cell morphology can differ between fish species. In addition, blood cell counts and blood chemistry can vary between fish species, demographics, water conditions, seasons, diets, and culture systems, which precludes the use of RI's from other fish species. For this study, blood was collected for plasma biochemistry and hematology analysis between June 20 and July 18, 2019, from healthy, yearling sablefish, hatched and reared in captivity on a commercial diet. Overnight fast of 16-18 hours did not sufficiently reduce lipids in the blood, which led to visible lipemia and frequent rupture of blood cells during analysis. Therefore, sablefish should be fasted for 24 to 36 hours before blood is collected to reduce hematology artifacts or possible reagent interference in plasma biochemistry analysis. Lymphocytes were the most dominant leukocytes (98%), while eosinophils were rare, and basophils were not detected in sablefish. Neutrophils were very large cells with Döhle bodies. In mammals and avian species, Döhle bodies are usually signs of toxic change from inflammation, but no such association was found in these fish. In conclusion, lipemia can interfere with sablefish blood analysis, and available removal methods should be evaluated as fasting for up to 36 h might not always be feasible. Also, more studies are required to establish RI for different developmental stages and rearing conditions.
Sablefish (Anoplopoma fimbra Pallas, 1814) plasma biochemistry and hematology reference intervals including blood cell morphology
Plasma biochemistry and hematology reference intervals are integral health assessment tools in all medical fields, including aquatic animal health. As sablefish ( Anoplopoma fimbria ) are becoming aquaculturally and economically more important, this manuscript provides essential reference intervals (RI) for their plasma biochemistry and hematology along with reference photomicrographs of blood cells in healthy, fasted sablefish. Blood cell morphology can differ between fish species. In addition, blood cell counts and blood chemistry can vary between fish species, demographics, water conditions, seasons, diets, and culture systems, which precludes the use of RI’s from other fish species. For this study, blood was collected for plasma biochemistry and hematology analysis between June 20 and July 18, 2019, from healthy, yearling sablefish, hatched and reared in captivity on a commercial diet. Overnight fast of 16–18 hours did not sufficiently reduce lipids in the blood, which led to visible lipemia and frequent rupture of blood cells during analysis. Therefore, sablefish should be fasted for 24 to 36 hours before blood is collected to reduce hematology artifacts or possible reagent interference in plasma biochemistry analysis. Lymphocytes were the most dominant leukocytes (98%), while eosinophils were rare, and basophils were not detected in sablefish. Neutrophils were very large cells with Döhle bodies. In mammals and avian species, Döhle bodies are usually signs of toxic change from inflammation, but no such association was found in these fish. In conclusion, lipemia can interfere with sablefish blood analysis, and available removal methods should be evaluated as fasting for up to 36 h might not always be feasible. Also, more studies are required to establish RI for different developmental stages and rearing conditions.
Variation in Isotopic Trophic Niche of Sablefish in the Northeast Pacific
Sablefish (Anoplopoma fimbria , Anoplopomatidae) and shortraker rockfish (Sebastes borealis , Sebastidae) co-occur in deepwater marine habitats in the northeast Pacific. Both species are economically valuable, but their ecologies are not well known. We used stable isotope analysis of carbon and nitrogen to explore isotopic niches of A. fimbria and S. borealis in two distinct locations—a deep strait in the inside passage area and an open coastal area of the continental shelf, both in southeast Alaska, USA. Anoplopoma fimbria and S. borealis exhibited similar positions of isotopic niches based on nitrogen and carbon isotopic ratios, suggesting potential interspecific competition, especially in the inside location. In addition, S. borealis had a smaller niche breadth compared to A. fimbria in the coastal location. Both species had enriched nitrogen and carbon isotopic ratios in the inside location compared to the coastal location. Differences in isotopic niches between these two locations suggest the possibility of location-specific variation in isotopic niches of these two species of widespread, abundant deepwater fishes.
Growth performance, oxidative stress, and non-specific immune responses in juvenile sablefish, Anoplopoma fimbria, by changes of water temperature and salinity
Juvenile sablefish, Anoplopoma fimbria (mean length 15.5 ± 1.9 cm, mean weight 68.5 ± 4.8 g), were used to evaluate the effects on growth, oxidative stress, and non-specific immune responses by changes of water temperature (8, 10, 12, 14, 16, 18, and 20 °C) and salinity (100 (35.0), 90 (31.5), 80 (28.0), 70 (24.5), 60 (21.0), 50 (17.5), and 40% (14.0) (‰)) for 4 months. The growth performance was significantly increased at the temperature of 12 and 14 °C, and the feed efficiency was notably decreased at the temperature of 18 °C. The growth performance and feed efficiency were also significantly decreased at low salinity. The antioxidant responses such as superoxide dismutase and catalase were significantly increased by the high temperature and decreased by the low salinity. The immune responses such as lysozyme and phagocytosis were elevated by the temperature of 18 °C and decreased by the salinity of 50%. The results of this study indicate that the growth performance of juvenile sablefish, A. fimbria , is influenced by the temperature and salinity, and the excessive temperature and salinity levels can affect the antioxidant and immune responses.
Sablefish (Anoplopoma fimbria) chromosome-level genome assembly
Sablefish (Anoplopoma fimbria) are in the suborder Cottioidei, which also includes stickleback and lumpfish. This species inhabits coastal regions of the northeastern and northwestern Pacific Ocean from California to Japan. A commercial fishery for sablefish began to flourish in the 1960s, though a downward trend in stock biomass and landings has been observed since 2010. Aquaculture protocols have been developed for sablefish; eggs and sperm from wild-caught and hatchery-reared captive broodstock are used to generate offspring that reach market size in about two years. Parentage analyses show that survival in aquaculture varies among families. Growth rate and disease resistance also vary among individuals and cohorts, but the extent to which genetics and the environment contribute to this variation is unclear. The sablefish genome assembly reported here will form the foundation for SNP-based surveys designed to detect genetic markers associated with survival, growth rate, and pathogen resistance. Beyond its contribution to sablefish domestication, the sablefish genome can be a resource for the management of the wild sablefish fishery. The assembly generated in this study had a length of 653 Mbp, a scaffold N50 of 26.74 Mbp, a contig N50 of 2.57 Mbp, and contained more than 98% of the 3640 Actinopterygii core genes. We placed 620.9 Mbp (95% of the total) onto 24 chromosomes using a genetic map derived from six full-sib families and Hi-C contact data.
Establishment and characterization of novel spontaneously immortalized larval cell lines from sablefish Anoplopoma fimbria
Sablefish Anoplopoma fimbria is a groundfish of the North Pacific Ocean typically found in sea floor habitat at depths to 2700 m. Prized as a food fish with exceptionally high market value, sablefish aquaculture has been sought to provide a sustainable source of this fish to meet market demands. While commercial culture has successfully produced market-sized fish in Pacific coastal environments, production has been hampered by disease and the overall lack of information on sablefish health and immunology. To begin to address these knowledge gaps, herein we describe the isolation and characterization of spontaneously immortalized sablefish larval cell lines (AFL). Six sublines were established from pools of early yolk-sac larvae, while attempts to develop tissue-specific–derived cell lines were unsuccessful. The six yolk-sac larval cell lines each display two morphologies in culture, an elongated fibroblast-like cell type, and a rounded squamous or epithelial-like cell type. Cytogenetic characterization suggests that both cell types are diploid (2n = 48) with 24 pairs of chromosomes, 23 pairs of autosomes, and 1 pair of sex chromosomes. A small proportion (11%) of AFL cells display tetraploidy. Incubation temperature and medium composition experiments revealed HEPES buffered L-15 media containing 10–20% FBS at temperatures between 15 and 18° C yielded optimal cell growth. These growth characteristics suggest that sablefish larval cells display a robustness for varying growth conditions. The establishment of AFL cell lines provides a foundational tool to study the physiology, health, immunology, and cell and molecular biology of sablefish.
The shadow model: how and why small choices in spatially explicit species distribution models affect predictions
The use of species distribution models (SDMs) has rapidly increased over the last decade, driven largely by increasing observational evidence of distributional shifts of terrestrial and aquatic populations. These models permit, for example, the quantification of range shifts, the estimation of species co-occurrence, and the association of habitat to species distribution and abundance. The increasing complexity of contemporary SDMs presents new challenges—as the choices among modeling options increase, it is essential to understand how these choices affect model outcomes. Using a combination of original analysis and literature review, we synthesize the effects of three common model choices in semi-parametric predictive process species distribution modeling: model structure, spatial extent of the data, and spatial scale of predictions. To illustrate the effects of these choices, we develop a case study centered around sablefish ( Anoplopoma fimbria ) distribution on the west coast of the USA. The three modeling choices represent decisions necessary in virtually all ecological applications of these methods, and are important because the consequences of these choices impact derived quantities of interest ( e.g ., estimates of population size and their management implications). Truncating the spatial extent of data near the observed range edge, or using a model that is misspecified in terms of covariates and spatial and spatiotemporal fields, led to bias in population biomass trends and mean distribution compared to estimates from models using the full dataset and appropriate model structure. In some cases, these suboptimal modeling decisions may be unavoidable, but understanding the tradeoffs of these choices and impacts on predictions is critical. We illustrate how seemingly small model choices, often made out of necessity or simplicity, can affect scientific advice informing management decisions—potentially leading to erroneous conclusions about changes in abundance or distribution and the precision of such estimates. For example, we show how incorrect decisions could cause overestimation of abundance, which could result in management advice resulting in overfishing. Based on these findings and literature gaps, we outline important frontiers in SDM development.
Genomics of sablefish (Anoplopoma fimbria): expressed genes, mitochondrial phylogeny, linkage map and identification of a putative sex gene
Background The sablefish (order: Scorpaeniformes) is an economically important species in commercial fisheries of the North Pacific and an emerging species in aquaculture. Aside from a handful of sequences in NCBI and a few published microsatellite markers, little is known about the genetics of this species. The development of genetic tools, including polymorphic markers and a linkage map will allow for the successful development of future broodstock and mapping of phenotypes of interest. The significant sexual dimorphism between females and males makes a genetic test for early identification of sex desirable. Results A full mitochondrial genome is presented and the resulting phylogenetic analysis verifies the placement of the sablefish within the Scorpaeniformes. Nearly 35,000 assembled transcript sequences are used to identify genes and obtain polymorphic SNP and microsatellite markers. 360 transcribed polymorphic loci from two sablefish families produce a map of 24 linkage groups. The sex phenotype maps to sablefish LG14 of the male map. We show significant conserved synteny and conservation of gene-order between the threespine stickleback Gasterosteus aculeatus and sablefish. An additional 1843 polymorphic SNP markers are identified through next-generation sequencing techniques. Sex-specific markers and sequence insertions are identified immediately upstream of the gene gonadal-soma derived factor ( gsdf ), the master sex determinant locus in the medaka species Oryzias luzonensis . Conclusions The first genomic resources for sablefish provide a foundation for further studies. Over 35,000 transcripts are presented, and the genetic map represents, as far as we can determine, the first linkage map for a member of the Scorpaeniformes. The observed level of conserved synteny and comparative mapping will allow the use of the stickleback genome in future genetic studies on sablefish and other related fish, particularly as a guide to whole-genome assembly. The identification of sex-specific insertions immediately upstream of a known master sex determinant implicates gsdf as an excellent candidate for the master sex determinant for sablefish.
Movement and diving behavior of satellite-tagged male sperm whales in the Gulf of Alaska
Male sperm whales ( Physeter macrocephalus ) are known to interact with and depredate from commercial longline fishing vessels targeting sablefish ( Anoplopoma fimbria ) in the Gulf of Alaska (GOA). This study aims to better understand their movement patterns and diving behavior in this region, and in relation to depredation behavior. Between 2007 and 2016 a total of 33 satellite tags were deployed on sperm whales interacting with fishing vessels in the eastern GOA. A subset of these tags also collected dive characteristics. We used state space models to interpolate hourly positions from tags and estimate behavioral state from 29 usable tag records, 14 of which had associated dive information. Whales exhibited slower horizontal movement (1.4 km/hr) within GOA waters compared to south of the GOA (5.5 km/hr), indicating tagged whales sped up when they left the region. Behavioral states indicated primarily foraging behavior (82% of locations) in the GOA and primarily transiting behavior (74% of locations) when whales left the GOA. Dive data showed average ( ± Standard Deviation) maximum dive depths of 396 m ( ± 166), and dive durations of 32 min (± 9). Generalized additive models indicated that dives were significantly deeper and longer during the daytime than dawn, dusk, or nighttime, and dives were significantly deeper and shorter during quarter moons, when tidal currents are weakest. Maximum dive depth decreased in areas of higher sablefish CPUE, suggesting a potential link between the sablefish fishery and depredation behavior. As seafloor depth increased, up to 800 m, dives became deeper, indicating that whales were likely targeting both bathypelagic and mesopelagic prey. This highlights the importance of the GOA continental slope as a foraging ground for male sperm whales. This enhanced understanding of sperm whale foraging ecology informs management and conservation efforts in high latitude foraging grounds.
Implications of increased spatial and trophic overlap between juvenile Pacific salmon and Sablefish in the northern California Current
Abstract Objective The study was designed to assess long‐term variability in the distribution of juvenile Pacific salmon Oncorhynchus spp. and Sablefish Anoplopoma fimbria. The study also evaluated whether Sablefish and Pacific salmon shared food resources and looked to characterize Sablefish during an understudied period of their life cycle. Methods To meet the objectives, the study used data from 26 years of surface trawls conducted in Oregon and Washington coastal waters (1998–2023). Spatial–temporal models were used to measure changes in abundance and distribution of Pacific salmon and Sablefish along with covariates of ocean temperature. The study evaluated trophic characteristics of Pacific salmon and Sablefish from 2020 for differences. The temporal variation in size and diets of Sablefish were also analyzed, along with energy density of fish caught in 2020. Result The spatial–temporal model demonstrated that there has been a nearshore expansion of juvenile Sablefish over the past 26 years that was correlated with increased ocean temperature. The nearshore expansion of Sablefish resulted in increased spatial and trophic overlap with juvenile Pacific salmon. While feeding in nearshore waters, juvenile Sablefish demonstrated competitive feeding advantages over juvenile Pacific salmon during a critical phase of salmonid early marine life history. Juvenile Sablefish exhibited significant ontogenetic diet and energetic shifts, and even the smallest (68–80 mm fork length) were piscivorous. Conclusions If juvenile Sablefish numbers continue to increase relative to Pacific salmon, they could exert more competitive pressure, especially if food resources become limited. Pacific salmon may experience adverse effects from competition, regardless of whether or not juvenile Sablefish, which have recently expanded into nearshore waters, successfully recruit to the adult population. Impact statement Juvenile Sablefish have expanded into nearshore coastal waters in correlation with warmer ocean temperatures. This expansion placed them in direct competition with juvenile Pacific salmon, where Sablefish exhibited higher feeding capabilities and were at times much more numerous.