Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,816 result(s) for "Saccadic eye movements"
Sort by:
Changes in Horizontal Saccades with Age
Previous studies have demonstrated that saccadic eye movements are slow and imprecise in infants; however, by age 7, they are close to the adult levels. Saccadic eye movement efficiency peaks in adolescence, and after age 50, peak velocity and accuracy begin to decline due to age-related changes in the brain. Different studies have demonstrated the age effect on the reflexive and antisaccade task performance, e.g., a decrease in latency and peak velocity scores with age. The current study aims to explore age-related changes in saccadic eye movement latency, peak velocity, and accuracy in reflexive and antisaccade tasks in school-age children. Saccadic eye movement targets for antisaccade and reflexive saccade tasks were presented at one spatial position. Eye movements were recorded with a Tobii Pro Fusion video-oculograph to analyse peak velocity, latency, and accuracy (120 Hz). The results demonstrate a significant age effect only on the peak velocity measurements in the antisaccade task, i.e., a decrease in the peak velocity with age was observed only for the antisaccades directed to the right. No significant age effect on the latency and accuracy measurements in both antisaccade and reflexive saccade tasks was observed. The obtained results demonstrate that there are no age-related effects on the parameters of rightward directed reflexive saccades (latency, peak velocity, and accuracy) and antisaccades (latency and accuracy).
GR3027 reversal of neurosteroid-induced, GABA-A receptor-mediated inhibition of human brain function: an allopregnanolone challenge study
Rationale GR3027 is a novel small molecule GABA-A receptor-modulating steroid antagonist, which in non-clinical studies has shown promise for treatment of human disorders due to allosteric over-activation of GABA-A receptors by neurosteroids, such as allopregnanolone. We here studied its safety, pharmacokinetics, and ability to inhibit allopregnanolone effects in humans. Methods Safety and pharmacokinetics were studied in healthy adult males receiving ascending single or multiple oral GR3027 vs. placebo. GR3027-mediated reversal of allopregnanolone effect on maximal saccadic eye velocity (SEV), and self-rated somnolence was studied in a double-blind, placebo-controlled, three-part cross-over study in which 3 or 30 mg oral GR3027 preceded 0.05 mg/kg of i.v. allopregnanolone. Results GR3027 was well tolerated, adverse events were generally mild and transient, and no dose-limiting toxicity or grade 3 adverse events were observed up to the highest single (200 mg) or multiple (100 mg every 12 h for 5 days) doses. The maximum concentration ( C max ) and systemic exposure (area under the plasma concentration-time curve from dose extrapolated to infinity [AUC 0–∞ ] and/or AUC during the dosing interval [AUC τ ]) varied linearly with dose; with dose-dependent accumulation ratios of 1.3–1.6. Allopregnanolone decreased SEV and induced somnolence in most, but not all subjects. By predefined analyses, 30 mg GR3027 significantly inhibited allopregnanolone-induced decrease in SEV ( p  = 0.03); 3 and 30 mg GR3027 non-significantly inhibited allopregnanolone-induced sedation. By post hoc analyses restricted to subjects with allopregnanolone-induced changes and the time period over which they occurred, GR3027 dose dependently inhibited allopregnanolone-induced decrease in SEV ( p  = 0.04 at 30 mg, non-significant at 3 mg) and allopregnanolone-induced sedation ( p  = 0.01/0.05 at 3/30 mg doses). Conclusion Oral GR3027 mitigates inhibition of brain function induced by allopregnanolone at doses which are clinically well tolerated and associated with linear pharmacokinetics.
How does number magnitude influence temporal and spatial parameters of eye movements?
The influence of numerical processing on individuals’ behavior is now well documented. The spatial representation of numbers on a left-to-right mental line (i.e., SNARC effect) has been shown to have sensorimotor consequences, the majority of studies being mainly concerned with its impact on the response times. Its impact on the motor programming stage remains less documented, although swiping movement amplitudes have recently been shown to be modulated by number magnitude. Regarding saccadic eye movements, the few available studies have not provided clear-cut conclusions. They showed that spatial–numerical associations modulated ocular drifts, but not the amplitude of memory-guided saccades. Because these studies held saccadic coordinates constant, which might have masked potential numerical effects, we examined whether spontaneous saccadic eye movements (with no saccadic target) could reflect numerical effects. Participants were asked to look either to the left or to the right side of an empty screen to estimate the magnitude (< or > 5) of a centrally presented digit. Latency data confirmed the presence of the classical SNARC and distance effects. More critically, saccade amplitude reflected a numerical effect: participants’ saccades were longer for digits far from the standard (1 and 9) and were shorter for digits close to it (4 and 6). Our results suggest that beyond response times, kinematic parameters also offer valuable information for the understanding of the link between numerical cognition and motor programming.
The Effect of Stimulus Contrast and Spatial Position on Saccadic Eye Movement Parameters
(1) Background: Saccadic eye movements are rapid eye movements aimed to position the object image on the central retina, ensuring high-resolution data sampling across the visual field. Although saccadic eye movements are studied extensively, different experimental settings applied across different studies have left an open question of whether and how stimulus parameters can affect the saccadic performance. The current study aims to explore the effect of stimulus contrast and spatial position on saccadic eye movement latency, peak velocity and accuracy measurements. (2) Methods: Saccadic eye movement targets of different contrast levels were presented at four different spatial positions. The eye movements were recorded with a Tobii Pro Fusion video-oculograph (250 Hz). (3) Results: The results demonstrate a significant effect of stimulus spatial position on the latency and peak velocity measurements at a medium grey background, 30 cd/m2 (negative and positive stimulus polarity), light grey background, 90 cd/m2 (negative polarity), and black background, 3 cd/m2 (positive polarity). A significant effect of the stimulus spatial position was observed on the accuracy measurements when the saccadic eye movement stimuli were presented on a medium grey background (negative polarity) and on a black background. No significant effect of stimulus contrast was observed on the peak velocity measurements under all conditions. A significant stimulus contrast effect on latency and accuracy was observed only on a light grey background. (4) Conclusions: The best saccadic eye movement performance (lowest latency, highest peak velocity and accuracy measurements) can be observed when the saccades are oriented to the right and left from the central fixation point. Furthermore, when presenting the stimulus on a light grey background, a very low contrast stimuli should be considered carefully.
Factors Influencing Saccadic Reaction Time: Effect of Task Modality, Stimulus Saliency, Spatial Congruency of Stimuli, and Pupil Size
It is often assumed that the reaction time of a saccade toward visual and/or auditory stimuli reflects the sensitivities of our oculomotor-orienting system to stimulus saliency. Endogenous factors, as well as stimulus-related factors, would also affect the saccadic reaction time (SRT). However, it was not clear how these factors interact and to what extent visual and auditory-targeting saccades are accounted for by common mechanisms. The present study examined the effect of, and the interaction between, stimulus saliency and audiovisual spatial congruency on the SRT for visual- and for auditory-target conditions. We also analyzed pre-target pupil size to examine the relationship between saccade preparation and pupil size. Pupil size is considered to reflect arousal states coupling with locus-coeruleus (LC) activity during a cognitive task. The main findings were that (1) the pattern of the examined effects on the SRT varied between visual- and auditory-auditory target conditions, (2) the effect of stimulus saliency was significant for the visual-target condition, but not significant for the auditory-target condition, (3) Pupil velocity, not absolute pupil size, was sensitive to task set (i.e., visual-targeting saccade vs. auditory-targeting saccade), and (4) there was a significant correlation between the pre-saccade absolute pupil size and the SRTs for the visual-target condition but not for the auditory-target condition. The discrepancy between target modalities for the effect of pupil velocity and between the absolute pupil size and pupil velocity for the correlation with SRT may imply that the pupil effect for the visual-target condition was caused by a modality-specific link between pupil size modulation and the SC rather than by the LC-NE (locus coeruleus-norepinephrine) system. These results support the idea that different threshold mechanisms in the SC may be involved in the initiation of saccades toward visual and auditory targets.
Numerical study of the effect of head and eye movement on progression of retinal detachment
Rhegmatogenous retinal detachment (RD) is a sight threatening condition. In this type of RD a break in the retina allows retrohyaloid fluid to enter the subretinal space. The prognosis concerning the patients’ visual acuity is better if the RD has not progressed to the macula. The patient is given a posturing advice of bed rest and semi-supine positioning (with the RD as low as possible) to allow the utilisation of gravity and immobilisation in preventing progression of the RD. It is, however, unknown what external loads on the eye contribute the most to the progression of a RD. The goal of this exploratory study is to elucidate the role of eye movements caused by head movements and saccades on the progression of an RD. A finite element model is produced and evaluated in this study. The model is based on geometric and material properties reported in the literature. The model shows that a mild head movement and a severe eye movement produce similar traction loads on the retina. This implies that head movements—and not eye movements—are able to cause loads that can trigger and progress an RD. These preliminary results suggest that head movements have a larger effect on the progression of an RD than saccadic eye movements. This study is the first to use numerical analysis to investigate the development and progression of RD and shows promise for future work.
Saccade-related activity in the prefrontal cortex: its role in eye movement control and cognitive functions
Prefrontal neurons exhibit saccade-related activity and pre-saccadic memory-related activity often encodes the directions of forthcoming eye movements, in line with demonstrated prefrontal contribution to flexible control of voluntary eye movements. However, many prefrontal neurons exhibit post-saccadic activity that is initiated well after the initiation of eye movement. Although post-saccadic activity has been observed in the frontal eye field, this activity is thought to be a corollary discharge from oculomotor centers, because this activity shows no directional tuning and is observed whenever the monkeys perform eye movements regardless of goal-directed or not. However, prefrontal post-saccadic activities exhibit directional tunings similar as pre-saccadic activities and show context dependency, such that post-saccadic activity is observed only when monkeys perform goal-directed saccades. Context-dependency of prefrontal post-saccadic activity suggests that this activity is not a result of corollary signals from oculomotor centers, but contributes to other functions of the prefrontal cortex. One function might be the termination of memory-related activity after a behavioral response is done. This is supported by the observation that the termination of memory-related activity coincides with the initiation of post-saccadic activity in population analyses of prefrontal activities. The termination of memory-related activity at the end of the trial ensures that the subjects can prepare to receive new and updated information. Another function might be the monitoring of behavioral performance, since the termination of memory-related activity by post-saccadic activity could be associated with informing the correctness of the response and the termination of the trial. However, further studies are needed to examine the characteristics of saccade-related activities in the prefrontal cortex and their functions in eye movement control and a variety of cognitive functions.
Neuronal representation of saccadic error in macaque posterior parietal cortex (PPC)
Motor control, motor learning, self-recognition, and spatial perception all critically depend on the comparison of motor intention to the actually executed movement. Despite our knowledge that the brainstem-cerebellum plays an important role in motor error detection and motor learning, the involvement of neocortex remains largely unclear. Here, we report the neuronal computation and representation of saccadic error in macaque posterior parietal cortex (PPC). Neurons with persistent pre- and post-saccadic response (PPS) represent the intended end-position of saccade; neurons with late post-saccadic response (LPS) represent the actual end-position of saccade. Remarkably, after the arrival of the LPS signal, the PPS neurons’ activity becomes highly correlated with the discrepancy between intended and actual end-position, and with the probability of making secondary (corrective) saccades. Thus, this neuronal computation might underlie the formation of saccadic error signals in PPC for speeding up saccadic learning and leading the occurrence of secondary saccade.
Dopamine and eye movement control in Parkinson’s disease: deficits in corollary discharge signals?
Movement in Parkinson’s disease (PD) is fragmented, and the patients depend on visual information in their behavior. This suggests that the patients may have deficits in internally monitoring their own movements. Internal monitoring of movements is assumed to rely on corollary discharge signals that enable the brain to predict the sensory consequences of actions. We studied early-stage PD patients ( N = 14), and age-matched healthy control participants ( N = 14) to examine whether PD patients reveal deficits in updating their sensory representations after eye movements. The participants performed a double-saccade task where, in order to accurately fixate a second target, the participant must correct for the displacement caused by the first saccade. In line with previous reports, the patients had difficulties in fixating the second target when the eye movement was performed without visual guidance. Furthermore, the patients had difficulties in taking into account the error in the first saccade when making a saccade toward the second target, especially when eye movements were made toward the side with dominant motor symptoms. Across PD patients, the impairments in saccadic eye movements correlated with the integrity of the dopaminergic system as measured with [ 123 I]FP-CIT SPECT: Patients with lower striatal (caudate, anterior putamen, and posterior putamen) dopamine transporter binding made larger errors in saccades. This effect was strongest when patients made memory-guided saccades toward the second target. Our results provide tentative evidence that the motor deficits in PD may be partly due to deficits in internal monitoring of movements.
Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments
Combining EEG with eye-tracking is a promising approach to study neural correlates of natural vision, but the resulting recordings are also heavily contaminated by activity of the eye balls, eye lids, and extraocular muscles. While Independent Component Analysis (ICA) is commonly used to suppress these ocular artifacts, its performance under free viewing conditions has not been systematically evaluated and many published reports contain residual artifacts. Here I evaluated and optimized ICA-based correction for two tasks with unconstrained eye movements: visual search in images and sentence reading. In a first step, four parameters of the ICA pipeline were varied orthogonally: the (1) high-pass and (2) low-pass filter applied to the training data, (3) the proportion of training data containing myogenic saccadic spike potentials (SP), and (4) the threshold for eye tracker-based component rejection. In a second step, the eye-tracker was used to objectively quantify the correction quality of each ICA solution, both in terms of undercorrection (residual artifacts) and overcorrection (removal of neurogenic activity). As a benchmark, results were compared to those obtained with an alternative spatial filter, Multiple Source Eye Correction (MSEC). With commonly used settings, Infomax ICA not only left artifacts in the data, but also distorted neurogenic activity during eye movement-free intervals. However, correction results could be strongly improved by training the ICA on optimally filtered data in which SPs were massively overweighted. With optimized procedures, ICA removed virtually all artifacts, including the SP and its associated spectral broadband artifact from both viewing paradigms, with little distortion of neural activity. It also outperformed MSEC in terms of SP correction. Matlab code is provided.