Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,048 result(s) for "Saddles"
Sort by:
Real-time gravitational replicas: formalism and a variational principle
A bstract This work is the first step in a two-part investigation of real-time replica wormholes. Here we study the associated real-time gravitational path integral and construct the variational principle that will define its saddle-points. We also describe the general structure of the resulting real-time replica wormhole saddles, setting the stage for construction of explicit examples. These saddles necessarily involve complex metrics, and thus are accessed by deforming the original real contour of integration. However, the construction of these saddles need not rely on analytic continuation, and our formulation can be used even in the presence of non-analytic boundary-sources. Furthermore, at least for replica- and CPT-symmetric saddles we show that the metrics may be taken to be real in regions spacelike separated from a so-called ‘splitting surface’. This feature is an important hallmark of unitarity in a field theory dual.
The large-N limit of the 4d N = 1 superconformal index
A bstract We systematically analyze the large- N limit of the superconformal index of N = 1 superconformal theories having a quiver description. The index of these theories is known in terms of unitary matrix integrals, which we calculate using the recently-developed technique of elliptic extension. This technique allows us to easily evaluate the integral as a sum over saddle points of an effective action in the limit where the rank of the gauge group is infinite. For a generic quiver theory under consideration, we find a special family of saddles whose effective action takes a universal form controlled by the anomaly coefficients of the theory. This family includes the known supersymmetric black hole solution in the holographically dual AdS 5 theories. We then analyze the index refined by turning on flavor chemical potentials. We show that, for a certain range of chemical potentials, the effective action again takes a universal cubic form that is controlled by the anomaly coefficients of the theory. Finally, we present a large class of solutions to the saddle-point equations which are labelled by group homomorphisms of finite abelian groups of order N into the torus.
Replica wormholes and the entropy of Hawking radiation
A bstract The information paradox can be realized in anti-de Sitter spacetime joined to a Minkowski region. In this setting, we show that the large discrepancy between the von Neumann entropy as calculated by Hawking and the requirements of unitarity is fixed by including new saddles in the gravitational path integral. These saddles arise in the replica method as complexified wormholes connecting different copies of the black hole. As the replica number n → 1, the presence of these wormholes leads to the island rule for the computation of the fine-grained gravitational entropy. We discuss these replica wormholes explicitly in two-dimensional Jackiw-Teitelboim gravity coupled to matter.
Gravitational thermodynamics without the conformal factor problem: partition functions and Euclidean saddles from Lorentzian path integrals
A bstract Thermal partition functions for gravitational systems have traditionally been studied using Euclidean path integrals. But in Euclidean signature the gravitational action suffers from the conformal factor problem, which renders the action unbounded below. This makes it difficult to take the Euclidean formulation as fundamental. However, despite their familiar association with periodic imaginary time, thermal gravitational partition functions can also be described by real-time path integrals over contours defined by real Lorentzian metrics. The one caveat is that we should allow certain codimension-2 singularities analogous to the familiar Euclidean conical singularities. With this understanding, we show that the usual Euclidean-signature black holes (or their complex rotating analogues) define saddle points for the real-time path integrals that compute our partition functions. Furthermore, when the black holes have positive specific heat, we provide evidence that a codimension-2 subcontour of our real Lorentz-signature contour of integration can be deformed so as to show that these black holes saddles contribute with non-zero weight to the semiclassical limit, and that the same is then true of the remaining two integrals.
Sub-leading structures in superconformal indices: subdominant saddles and logarithmic contributions
A bstract We systematically study various sub-leading structures in the superconformal index of N = 4 supersymmetric Yang-Mills theory with SU( N ) gauge group. We concentrate in the superconformal index description as a matrix model of elliptic gamma functions and in the Bethe-Ansatz presentation. Our saddle-point approximation goes beyond the Cardy-like limit and we uncover various saddles governed by a matrix model corresponding to SU( N ) Chern-Simons theory. The dominant saddle, however, leads to perfect agreement with the Bethe-Ansatz approach. We also determine the logarithmic correction to the superconformal index to be log N , finding precise agreement between the saddle-point and Bethe-Ansatz approaches in their respective approximations. We generalize the two approaches to cover a large class of 4d N = 1 superconformal theories. We find that also in this case both approximations agree all the way down to a universal contribution of the form log N . The universality of this last result constitutes a robust signature of this ultraviolet description of asymptotically AdS 5 black holes and could be tested by low-energy IIB supergravity.
Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems
On solving a convex-concave bilinear saddle-point problem (SPP), there have been many works studying the complexity results of first-order methods. These results are all about upper complexity bounds, which can determine at most how many iterations would guarantee a solution of desired accuracy. In this paper, we pursue the opposite direction by deriving lower complexity bounds of first-order methods on large-scale SPPs. Our results apply to the methods whose iterates are in the linear span of past first-order information, as well as more general methods that produce their iterates in an arbitrary manner based on first-order information. We first work on the affinely constrained smooth convex optimization that is a special case of SPP. Different from gradient method on unconstrained problems, we show that first-order methods on affinely constrained problems generally cannot be accelerated from the known convergence rate O(1 / t) to O(1/t2), and in addition, O(1 / t) is optimal for convex problems. Moreover, we prove that for strongly convex problems, O(1/t2) is the best possible convergence rate, while it is known that gradient methods can have linear convergence on unconstrained problems. Then we extend these results to general SPPs. It turns out that our lower complexity bounds match with several established upper complexity bounds in the literature, and thus they are tight and indicate the optimality of several existing first-order methods.
Large N algebras and generalized entropy
A bstract We construct a Type II ∞ von Neumann algebra that describes the large N physics of single-trace operators in AdS/CFT in the microcanonical ensemble, where there is no need to include perturbative 1 /N corrections. Using only the extrapolate dictionary, we show that the entropy of semiclassical states on this algebra is holographically dual to the generalized entropy of the black hole bifurcation surface. From a boundary perspective, this constitutes a derivation of a special case of the QES prescription without any use of Euclidean gravity or replicas; from a purely bulk perspective, it is a derivation of the quantum-corrected Bekenstein-Hawking formula as the entropy of an explicit algebra in the G → 0 limit of Lorentzian effective field theory quantum gravity. In a limit where a black hole is first allowed to equilibrate and then is later potentially re-excited, we show that the generalized second law is a direct consequence of the monotonicity of the entropy of algebras under trace-preserving inclusions. Finally, by considering excitations that are separated by more than a scrambling time we construct a “free product” von Neumann algebra that describes the semiclassical physics of long wormholes supported by shocks. We compute Rényi entropies for this algebra and show that they are equal to a sum over saddles associated to quantum extremal surfaces in the wormhole. Surprisingly, however, the saddles associated to “bulge” quantum extremal surfaces contribute with a negative sign.
Functional methods for false-vacuum decay in real time
A bstract We present the calculation of the Feynman path integral in real time for tunneling in quantum mechanics and field theory, including the first quantum corrections. For this purpose, we use the well-known fact that Euclidean saddle points in terms of real fields can be analytically continued to complex saddles of the action in Minkowski space. We also use Picard-Lefschetz theory in order to determine the middle-dimensional steepest- descent surface in the complex field space, constructed from Lefschetz thimbles, on which the path integral is to be performed. As an alternative to extracting the decay rate from the imaginary part of the ground-state energy of the false vacuum, we use the optical theorem in order to derive it from the real-time amplitude for forward scattering. While this amplitude may in principle be obtained by analytic continuation of its Euclidean counterpart, we work out in detail how it can be computed to one-loop order at the level of the path integral, i.e. evaluating the Gaußian integrals of fluctuations about the relevant complex saddle points. To that effect, we show how the eigenvalues and eigenfunctions on a thimble can be obtained by analytic continuation of the Euclidean eigensystem, and we determine the path-integral measure on thimbles. This way, using real-time methods, we recover the one-loop result by Callan and Coleman for the decay rate. We finally demonstrate our real-time methods explicitly, including the construction of the eigensystem of the complex saddle, on the archetypical example of tunneling in a quasi-degenerate quartic potential.
The SCI of N = 4 USp(2Nc) and SO(Nc) SYM as a matrix integral
A bstract We study the superconformal index of 4d N = 4 USp(2 N c ) and SO( N c ) SYM from a matrix model perspective. We focus on the Cardy-like limit of the index. Both in the symplectic and orthogonal case the index is dominated by a saddle point solution which we identify, reducing the calculation to a matrix integral of a pure Chern-Simons theory on the three-sphere. We further compute the subleading logarithmic corrections, which are of the order of the center of the gauge group. In the USp(2 N c ) case we also study other subleading saddles of the matrix integral. Finally we discuss the case of the Leigh-Strassler fixed point with SU( N c ) gauge group, and we compute the entropy of the dual black hole from the Legendre transform of the entropy function.
Supersymmetric phases of AdS4/CFT3
A bstract We exhibit an infinite family of supersymmetric phases in the three-dimensional ABJM superconformal field theory and the dual asymptotically AdS 4 gravity. They are interpreted as partially deconfined phases which generalize the confined/pure AdS phase and deconfined/supersymmetric black hole phase. Our analysis involves finding a family of saddle-points of the superconformal index labelled by rational points (equivalently, roots of unity), separately in the bulk and boundary theories. In the ABJM theory we calculate the free energy of each saddle by the large- N asymptotic expansion of the superconformal index to all orders in perturbation theory near the saddle-point. We find that this expansion terminates at finite order. In the gravitational theory we show that there is a corresponding family of solutions, constructed by orbifolding the eleven-dimensional uplift of the supersymmetric black hole. The on-shell gravitational action of each orbifold agrees with the free energy of the corresponding saddle in the SCFT. We find that there are two saddles in the ABJM theory with the same entropy as the supersymmetric black hole, corresponding to the two primitive fourth-roots of unity, which causes macroscopic oscillations in the microcanonical index.