Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
680 result(s) for "Salamandridae"
Sort by:
Community disassembly and disease: realistic—but not randomized—biodiversity losses enhance parasite transmission
Debates over the relationship between biodiversity and disease dynamics underscore the need for a more mechanistic understanding of how changes in host community composition influence parasite transmission. Focusing on interactions between larval amphibians and trematode parasites, we experimentally contrasted the effects of host richness and species composition to identify the individual and joint contributions of both parameters on the infection levels of three trematode species. By combining experimental approaches with field surveys from 147 ponds, we further evaluated how richness effects differed between randomized and realistic patterns of species loss (i.e. community disassembly). Our results indicated that community-level changes in infection levels were owing to host species composition, rather than richness. However, when composition patterns mirrored empirical observations along a natural assembly gradient, each added host species reduced infection success by 12–55%. No such effects occurred when assemblages were randomized. Mechanistically, these patterns were due to non-random host species assembly/disassembly: while highly competent species predominated in low diversity systems, less susceptible hosts became progressively more common as richness increased. These findings highlight the potential for combining information on host traits and assembly patterns to forecast diversity-mediated changes in multi-host disease systems.
Can Newts Cope with the Heat? Disparate Thermoregulatory Strategies of Two Sympatric Species in Water: e0128155
Many ectotherms effectively reduce their exposure to low or high environmental temperatures using behavioral thermoregulation. In terrestrial ectotherms, thermoregulatory strategies range from accurate thermoregulation to thermoconformity according to the costs and limits of thermoregulation, while in aquatic taxa the quantification of behavioral thermoregulation have received limited attention. We examined thermoregulation in two sympatric newt species, Ichthyosaura alpestris and Lissotriton vulgaris, exposed to elevated water temperatures under semi-natural conditions. According to a recent theory, we predicted that species for which elevated water temperatures pose a lower thermal quality habitat, would thermoregulate more effectively than species in thermally benign conditions. In the laboratory thermal gradient, L. vulgaris maintained higher body temperatures than I. alpestris. Semi-natural thermal conditions provided better thermal quality of habitat for L. vulgaris than for I. alpestris. Thermoregulatory indices indicated that I. alpestris actively thermoregulated its body temperature, whereas L. vulgaris remained passive to the thermal heterogeneity of aquatic environment. In the face of elevated water temperatures, sympatric newt species employed disparate thermoregulatory strategies according to the species-specific quality of the thermal habitat. Both strategies reduced newt exposure to suboptimal water temperatures with the same accuracy but with or without the costs of thermoregulation. The quantification of behavioral thermoregulation proves to be an important conceptual and methodological tool for thermal ecology studies not only in terrestrial but also in aquatic ectotherms.
Single Sucleotide Polymorphisms Reveal Genetic Structuring of the Carpathian Newt and Provide Evidence of Interspecific Gene Flow in the Nuclear Genome: e97431
Genetic variation within species is commonly structured in a hierarchical manner which may result from superimposition of processes acting at different spatial and temporal scales. In organisms of limited dispersal ability, signatures of past subdivision are detectable for a long time. Studies of contemporary genetic structure in such taxa inform about the history of isolation, range changes and local admixture resulting from geographically restricted hybridization with related species. Here we use a set of 139 transcriptome-derived, unlinked nuclear single nucleotide polymorphisms (SNP) to assess the genetic structure of the Carpathian newt (Lissotriton montandoni, Lm) and introgression from its congener, the smooth newt (L. vulgaris, Lv). Two substantially differentiated groups of Lm populations likely originated from separate refugia, both located in the Eastern Carpathians. The colonization of the present range in north-western and south-western directions was accompanied by a modest loss of variation; admixture between the two groups has occurred in the middle of the Eastern Carpathians. Local, apparently recent introgression of Lv alleles into several Lm populations was detected, demonstrating increased power for admixture detection in comparison to a previous study based on a limited number of microsatellite markers. The level of introgression was higher in Lm populations classified as admixed than in syntopic populations. We discuss the possible causes and propose further tests to distinguish between alternatives. Several outlier loci were identified in tests of interspecific differentiation, suggesting genomic heterogeneity of gene flow between species.
Predicting Environmental Suitability for a Rare and Threatened Species (Lao Newt, Laotriton laoensis) Using Validated Species Distribution Models. e59853
The Lao newt (Laotriton laoensis) is a recently described species currently known only from northern Laos. Little is known about the species, but it is threatened as a result of overharvesting. We integrated field survey results with climate and altitude data to predict the geographic distribution of this species using the niche modeling program Maxent, and we validated these predictions by using interviews with local residents to confirm model predictions of presence and absence. The results of the validated Maxent models were then used to characterize the environmental conditions of areas predicted suitable for L. laoensis. Finally, we overlaid the resulting model with a map of current national protected areas in Laos to determine whether or not any land predicted to be suitable for this species is coincident with a national protected area. We found that both area under the curve (AUC) values and interview data provided strong support for the predictive power of these models, and we suggest that interview data could be used more widely in species distribution niche modeling. Our results further indicated that this species is mostly likely geographically restricted to high altitude regions (i.e., over 1,000 m elevation) in northern Laos and that only a minute fraction of suitable habitat is currently protected. This work thus emphasizes that increased protection efforts, including listing this species as endangered and the establishment of protected areas in the region predicted to be suitable for L. laoensis, are urgently needed.
Impact of asynchronous emergence of two lethal pathogens on amphibian assemblages
Emerging diseases have been increasingly associated with population declines, with co-infections exhibiting many types of interactions. The chytrid fungus ( Batrachochytrium dendrobatidis ) and ranaviruses have extraordinarily broad host ranges, however co-infection dynamics have been largely overlooked. We investigated the pattern of co-occurrence of these two pathogens in an amphibian assemblage in Serra da Estrela (Portugal). The detection of chytridiomycosis in Portugal was linked to population declines of midwife-toads ( Alytes obstetricans ). The asynchronous and subsequent emergence of a second pathogen - ranavirus - caused episodes of lethal ranavirosis. Chytrid effects were limited to high altitudes and a single host, while ranavirus was highly pathogenic across multiple hosts, life-stages and altitudinal range. This new strain (Portuguese newt and toad ranavirus – member of the CMTV clade) caused annual mass die-offs, similar in host range and rapidity of declines to other locations in Iberia affected by CMTV-like ranaviruses. However, ranavirus was not always associated with disease, mortality and declines, contrasting with previous reports on Iberian CMTV-like ranavirosis. We found little evidence that pre-existing chytrid emergence was associated with ranavirus and the emergence of ranavirosis. Despite the lack of cumulative or amplified effects, ranavirus drove declines of host assemblages and changed host community composition and structure, posing a grave threat to all amphibian populations.
Regenerative capacity in newts is not altered by repeated regeneration and ageing
The extent to which adult newts retain regenerative capability remains one of the greatest unanswered questions in the regeneration field. Here we report a long-term lens regeneration project spanning 16 years that was undertaken to address this question. Over that time, the lens was removed 18 times from the same animals, and by the time of the last tissue collection, specimens were at least 30 years old. Regenerated lens tissues number 18 and number 17, from the last and the second to the last extraction, respectively, were analysed structurally and in terms of gene expression. Both exhibited structural properties identical to lenses from younger animals that had never experienced lens regeneration. Expression of mRNAs encoding key lens structural proteins or transcription factors was very similar to that of controls. Thus, contrary to the belief that regeneration becomes less efficient with time or repetition, repeated regeneration, even at old age, does not alter newt regenerative capacity. Tissue regeneration is of great interest; however the number of times a given tissue can regenerate is unknown. Now, Eguchi et al . demonstrate that the lens of the Japanese newt—Cynops pyrrhogaster—can regenerate 18 times over a 16-year period, and that the new lenses are similar to those of control adult animals.
A New Upper Jurassic Ophthalmosaurid Ichthyosaur from the Slottsmøya Member, Agardhfjellet Formation of Central Spitsbergen
Abundant new ichthyosaur material has recently been documented in the Slottsmøya Member of the Agardhfjellet Formation from the Svalbard archipelago of Norway. Here we describe a partial skeleton of a new taxon, Janusaurus lundi, that includes much of the skull and representative portions of the postcranium. The new taxon is diagnosed by a suite of cranial character states including a very gracile stapedial shaft, the presence of a dorsal process on the prearticular and autapomorphic postcranial features such as the presence of an interclavicular trough and a conspicuous anterodorsal process of the ilium. The peculiar morphology of the ilia indicates a previously unrecognized degree of morphological variation in the pelvic girdle of ophthalmosaurids. We also present a large species level phylogenetic analysis of ophthalmosaurids including new and undescribed ichthyosaur material from the Upper Jurassic of Svalbard. Our results recover all Svalbard taxa in a single unresolved polytomy nested within Ophthalmosaurinae, which considerably increases the taxonomic composition of this clade. The paleobiogeographical implications of this result suggest the presence of a single clade of Boreal ophthalmosaurid ichthyosaurs that existed during the latest Jurassic, a pattern also reflected in the high degree of endemicity among some Boreal invertebrates, particularly ammonoids. Recent and ongoing descriptions of marine reptiles from the Slottsmøya Member Lagerstätte provide important new data to test hypotheses of marine amniote faunal turnover at the Jurassic-Cretaceous boundary.
Physiological Responses to Salinity Vary with Proximity to the Ocean in a Coastal Amphibian
Freshwater organisms are increasingly exposed to elevated salinity in their habitats, presenting physiological challenges to homeostasis. Amphibians are particularly vulnerable to osmotic stress and yet are often subject to high salinity in a variety of inland and coastal environments around the world. Here, we examine the physiological responses to elevated salinity of rough-skinned newts (Taricha granulosa) inhabiting a coastal stream on the Pacific coast of North America and compare the physiological responses to salinity stress of newts living in close proximity to the ocean with those of newts living farther upstream. Although elevated salinity significantly affected the osmotic (body weight, plasma osmolality), stress (corticosterone), and immune (bactericidal ability) responses of newts, animals found closer to the ocean were generally less reactive to salt stress than those found farther upstream. Our results provide possible evidence for some physiological tolerance in this species to elevated salinity in coastal environments. As freshwater environments become increasingly saline and more stressful, understanding the physiological tolerances of vulnerable groups such as amphibians will become increasingly important to our understanding of their abilities to respond, to adapt, and, ultimately, to survive.