Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
174 result(s) for "Sales forecasting Data processing."
Sort by:
Forecasting and operational research: a review
From its foundation, operational research (OR) has made many substantial contributions to practical forecasting in organizations. Equally, researchers in other disciplines have influenced forecasting practice. Since the last survey articles in JORS, forecasting has developed as a discipline with its own journals. While the effect of this increased specialization has been a narrowing of the scope of OR's interest in forecasting, research from an OR perspective remains vigorous. OR has been more receptive than other disciplines to the specialist research published in the forecasting journals, capitalizing on some of their key findings. In this paper, we identify the particular topics of OR interest over the past 25 years. After a brief summary of the current research in forecasting methods, we examine those topic areas that have grabbed the attention of OR researchers: computationally intensive methods and applications in operations and marketing. Applications in operations have proved particularly important, including the management of inventories and the effects of sharing forecast information across the supply chain. The second area of application is marketing, including customer relationship management using data mining and computer-intensive methods. The paper concludes by arguing that the unique contribution that OR can continue to make to forecasting is through developing models that link the effectiveness of new forecasting methods to the organizational context in which the models will be applied. The benefits of examining the system rather than its separate components are likely to be substantial.
Supply chain sales forecasting based on lightGBM and LSTM combination model
Purpose The purpose of this paper is to design a model that can accurately forecast the supply chain sales. Design/methodology/approach This paper proposed a new model based on lightGBM and LSTM to forecast the supply chain sales. In order to verify the accuracy and efficiency of this model, three representative supply chain sales data sets are selected for experiments. Findings The experimental results show that the combined model can forecast supply chain sales with high accuracy, efficiency and interpretability. Practical implications With the rapid development of big data and AI, using big data analysis and algorithm technology to accurately forecast the long-term sales of goods will provide the database for the supply chain and key technical support for enterprises to establish supply chain solutions. This paper provides an effective method for supply chain sales forecasting, which can help enterprises to scientifically and reasonably forecast long-term commodity sales. Originality/value The proposed model not only inherits the ability of LSTM model to automatically mine high-level temporal features, but also has the advantages of lightGBM model, such as high efficiency, strong interpretability, which is suitable for industrial production environment.
A survey of machine learning techniques for food sales prediction
Food sales prediction is concerned with estimating future sales of companies in the food industry, such as supermarkets, groceries, restaurants, bakeries and patisseries. Accurate short-term sales prediction allows companies to minimize stocked and expired products inside stores and at the same time avoid missing sales. This paper reviews existing machine learning approaches for food sales prediction. It discusses important design decisions of a data analyst working on food sales prediction, such as the temporal granularity of sales data, the input variables to use for predicting sales and the representation of the sales output variable. In addition, it reviews machine learning algorithms that have been applied to food sales prediction and appropriate measures for evaluating their accuracy. Finally, it discusses the main challenges and opportunities for applied machine learning in the domain of food sales prediction.
Time series model for forecasting the number of new admission inpatients
Background Hospital crowding is a rising problem, effective predicting and detecting managment can helpful to reduce crowding. Our team has successfully proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in the schistosomiasis and hand, foot, and mouth disease forecasting study. In this paper, our aim is to explore the application of the hybrid ARIMA-NARNN model to track the trends of the new admission inpatients, which provides a methodological basis for reducing crowding. Methods We used the single seasonal ARIMA (SARIMA), NARNN and the hybrid SARIMA-NARNN model to fit and forecast the monthly and daily number of new admission inpatients. The root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to compare the forecasting performance among the three models. The modeling time range of monthly data included was from January 2010 to June 2016, July to October 2016 as the corresponding testing data set. The daily modeling data set was from January 4 to September 4, 2016, while the testing time range included was from September 5 to October 2, 2016. Results For the monthly data, the modeling RMSE and the testing RMSE, MAE and MAPE of SARIMA-NARNN model were less than those obtained from the single SARIMA or NARNN model, but the MAE and MAPE of modeling performance of SARIMA-NARNN model did not improve. For the daily data, all RMSE, MAE and MAPE of NARNN model were the lowest both in modeling stage and testing stage. Conclusions Hybrid model does not necessarily outperform its constituents’ performances. It is worth attempting to explore the reliable model to forecast the number of new admission inpatients from different data.
Time series-based workload prediction using the statistical hybrid model for the cloud environment
Resource management is addressed using infrastructure as a service. On demand, the resource management module effectively manages available resources. Resource management in cloud resource provisioning is aided by the prediction of central processing unit (CPU) and memory utilization. Using a hybrid ARIMA–ANN model, this study forecasts future CPU and memory utilization. The range of values discovered is utilized to make predictions, which is useful for resource management. In the cloud traces, the ARIMA model detects linear components in the CPU and memory utilization patterns. For recognizing and magnifying nonlinear components in the traces, the artificial neural network (ANN) leverages the residuals derived from the ARIMA model. The resource utilization patterns are predicted using a combination of linear and nonlinear components. From the predicted and previous history values, the Savitzky–Golay filter finds a range of forecast values. Point value forecasting may not be the best method for predicting multi-step resource utilization in a cloud setting. The forecasting error can be decreased by introducing a range of values, and we employ as reported by Engelbrecht HA and van Greunen M (in: Network and Service Management (CNSM), 2015 11th International Conference, 2015) OER (over estimation rate) and UER (under estimation rate) to cope with the error produced by over or under estimation of CPU and memory utilization. The prediction accuracy is tested using statistical-based analysis using Google's 29-day trail and BitBrain (BB).
Hyperautomation on fuzzy data dredging on four advanced industrial forecasting models to support sustainable business management
Recently, traditional manufacturing industries have faced two serious gaps and problems in line with effective product-line sales forecasting methods to balance the negative impacts on the performance of the subjective experience, including (1) arbitrary judgment, such as growth rate of expectancy, manager’s experiences, and historical sales data, may cause inaccurately predictive results and severe negative effects, and (2) sales forecasting is a key priority and challenge in the context of considerable product lines that have different properties and need specific models for supporting decision analytics. This study is motivated to propose an advanced hybrid model to utilize the advantages of variation for methods of fuzzy time series (FTS), exponential smoothing (ES), moving average (MA), and regression analysis (RA). To analyze the four product lines—stably growing product (SGP), declining product (DP), irregularly growing product (IGP), and special sales product (SSP)—this study is based on empirical sales data from a leading traditional manufacturer to accurately identify the high potentials of decisive key factors and objectively evaluate the model. Two evaluation standards—the mean absolute percentage error (MAPE) and root mean square error (RMSE), a parameter sensitivity analysis, and comparative analysis—are measured. After implementing the data from the case study, four key reports were conclusively identified. (1) Purely for the RMSE, the best one (10.32) is the ES method in the SGP line. (2) In the DP line, the better one is the RA(2) method, with a relatively low MAPE of 17.78% and RMSE of 26.46. (3) The FTS method is the best choice (MAPE 12.41% and RMSE 18.98) for the IGP line. (4) For the SSP line, the better one (MAPE 24.05 and RMSE 29.34) is the MA method. According to the above reports, although the proposed hybrid model has a general performance for the SSP line, it still has a superior predictor when compared to manager subjective prediction. Interestingly, the proposed model is rarely used, has a new trial with an innovative solution for the traditional manufacturer, and thus realizes applicable values. The study concludes with acceptable and satisfactory results and yields seven important findings and three managerial implications that significantly contribute to decision-making reference for complete sales-production planning for interested parties. Thus, this study benefits and values a conventional industry upgrade from novel application techniques.
Block Storage Optimization and Parallel Data Processing and Analysis of Product Big Data Based on the Hadoop Platform
The traditional distributed database storage architecture has the problems of low efficiency and storage capacity in managing data resources of seafood products. We reviewed various storage and retrieval technologies for the big data resources. A block storage layout optimization method based on the Hadoop platform and a parallel data processing and analysis method based on the MapReduce model are proposed. A multireplica consistent hashing algorithm based on data correlation and spatial and temporal properties is used in the parallel data processing and analysis method. The data distribution strategy and block size adjustment are studied based on the Hadoop platform. A multidata source parallel join query algorithm and a multi-channel data fusion feature extraction algorithm based on data-optimized storage are designed for the big data resources of seafood products according to the MapReduce parallel frame work. Practical verification shows that the storage optimization and data-retrieval methods provide supports for constructing a big data resource-management platform for seafood products and realize efficient organization and management of the big data resources of seafood products. The execution time of multidata source parallel retrieval is only 32% of the time of the standard Hadoop scheme, and the execution time of the multichannel data fusion feature extraction algorithm is only 35% of the time of the standard Hadoop scheme.
Early Prediction of Movie Box Office Success Based on Wikipedia Activity Big Data
Use of socially generated \"big data\" to access information about collective states of the minds in human societies has become a new paradigm in the emerging field of computational social science. A natural application of this would be the prediction of the society's reaction to a new product in the sense of popularity and adoption rate. However, bridging the gap between \"real time monitoring\" and \"early predicting\" remains a big challenge. Here we report on an endeavor to build a minimalistic predictive model for the financial success of movies based on collective activity data of online users. We show that the popularity of a movie can be predicted much before its release by measuring and analyzing the activity level of editors and viewers of the corresponding entry to the movie in Wikipedia, the well-known online encyclopedia.
Mind the gap – Assessing maturity of demand planning, a cornerstone of S&OP
Purpose The purpose of this paper is to develop and empirically validate a model for assessing demand planning maturity in organisations. Design/methodology/approach The authors developed a maturity assessment model for demand planning through iterations of theoretical and empirical work, combining insights from literature and practitioners. An online survey is developed to validate the model using data from different industries. Findings The authors identify six dimensions of demand planning maturity: data management, the use of forecasting methods, the forecasting system, performance management, the organisation and people management. The empirical study indicates that demand data are well managed and organisation readiness is high, yet improvements in the forecasting system and the management of forecast performance are needed. The results show a positive relationship between the size of an organisation and its demand planning maturity. Practical implications The contribution of this work is to propose an assessment model and survey instrument for demand planning maturity. This will help the practitioner to understand the current level of maturity of the demand planning process, reflect on the desired level and develop action plans to close the gap. Originality/value There is broad literature on process maturity assessment in general and on sales and operations planning (S&OP) maturity in particular. However, there is no comprehensive model for assessing the maturity of demand planning, which is a specific and critical process within the overall S&OP process. The authors fill this gap by offering a demand planning maturity model.