Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
687 result(s) for "Salmonella enterica - pathogenicity"
Sort by:
Salmonella enterica: Survival, Colonization, and Virulence Differences among Serovars
Data indicate that prevalence of specific serovars of Salmonella enterica in human foodborne illness is not correlated with their prevalence in feed. Given that feed is a suboptimal environment for S. enterica, it appears that survival in poultry feed may be an independent factor unrelated to virulence of specific serovars of Salmonella. Additionally, S. enterica serovars appear to have different host specificity and the ability to cause disease in those hosts is also serovar dependent. These differences among the serovars may be related to gene presence or absence and expression levels of those genes. With a better understanding of serovar specificity, mitigation methods can be implemented to control Salmonella at preharvest and postharvest levels.
Microcins mediate competition among Enterobacteriaceae in the inflamed gut
Certain commensal enterobacteria secrete small proteins called microcins that suppress the growth of other bacteria in the inflamed gut, conferring an intra- and interspecies competitive advantage. Therapeutic relevance of antibacterial microcins Microcins are small secreted proteins composed of relatively few peptides, secreted by certain commensal enterobacteria . They are known to be antimicrobial in vitro , but their role in vivo is unclear. This study shows that microcin expression enables the probiotic bacteria, Escherichia coli , to limit expansion of competing Enterobacteriaceae during intestinal inflammation. Therapeutic administration of microcin-producing bacteria substantially reduced intestinal colonization of pathogenic bacteria in mice. This is the first evidence that microcins mediate inter- and intra-species competition and may be useful as narrow-spectrum therapeutics to inhibit enteric pathogens and reduce enterobacterial blooms. The Enterobacteriaceae are a family of Gram-negative bacteria that include commensal organisms as well as primary and opportunistic pathogens that are among the leading causes of morbidity and mortality worldwide. Although Enterobacteriaceae often comprise less than 1% of a healthy intestine’s microbiota 1 , some of these organisms can bloom in the inflamed gut 2 , 3 , 4 , 5 ; expansion of enterobacteria is a hallmark of microbial imbalance known as dysbiosis 6 . Microcins are small secreted proteins that possess antimicrobial activity in vitro 7 , 8 , but whose role in vivo has been unclear. Here we demonstrate that microcins enable the probiotic bacterium Escherichia coli Nissle 1917 (EcN) to limit the expansion of competing Enterobacteriaceae (including pathogens and pathobionts) during intestinal inflammation. Microcin-producing EcN limits the growth of competitors in the inflamed intestine, including commensal E. coli , adherent–invasive E. coli and the related pathogen Salmonella enterica . Moreover, only therapeutic administration of the wild-type, microcin-producing EcN to mice previously infected with S. enterica substantially reduced intestinal colonization by the pathogen. Our work provides the first evidence that microcins mediate inter- and intraspecies competition among the Enterobacteriaceae in the inflamed gut. Moreover, we show that microcins can act as narrow-spectrum therapeutics to inhibit enteric pathogens and reduce enterobacterial blooms.
Viable-but-Nonculturable Listeria monocytogenes and Salmonella enterica Serovar Thompson Induced by Chlorine Stress Remain Infectious
The microbiological safety of fresh produce is monitored almost exclusively by culture-based detection methods. However, bacterial food-borne pathogens are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses such as chlorine, which is commonly used for fresh produce decontamination. Here, complete VBNC induction of green fluorescent protein-tagged Listeria monocytogenes and Salmonella enterica serovar Thompson was achieved by exposure to 12 and 3 ppm chlorine, respectively. The pathogens were subjected to chlorine washing following incubation on spinach leaves. Culture data revealed that total viable L. monocytogenes and Salmonella Thompson populations became VBNC by 50 and 100 ppm chlorine, respectively, while enumeration by direct viable counting found that chlorine caused a <1-log reduction in viability. The pathogenicity of chlorine-induced VBNC L. monocytogenes and Salmonella Thompson was assessed by using Caenorhabditis elegans . Ingestion of VBNC pathogens by C. elegans resulted in a significant life span reduction ( P = 0.0064 and P < 0.0001), and no significant difference between the life span reductions caused by the VBNC and culturable L. monocytogenes treatments was observed. L. monocytogenes was visualized beyond the nematode intestinal lumen, indicating resuscitation and cell invasion. These data emphasize the risk that VBNC food-borne pathogens could pose to public health should they continue to go undetected. IMPORTANCE Many bacteria are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses. VBNC cells cannot be detected by standard laboratory culture techniques, presenting a problem for the food industry, which uses these techniques to detect pathogen contaminants. This study found that chlorine, a sanitizer commonly used for fresh produce, induces a VBNC state in the food-borne pathogens Listeria monocytogenes and Salmonella enterica . It was also found that chlorine is ineffective at killing total populations of the pathogens. A life span reduction was observed in Caenorhabditis elegans that ingested these VBNC pathogens, with VBNC L. monocytogenes as infectious as its culturable counterpart. These data show that VBNC food-borne pathogens can both be generated and avoid detection by industrial practices while potentially retaining the ability to cause disease. Many bacteria are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses. VBNC cells cannot be detected by standard laboratory culture techniques, presenting a problem for the food industry, which uses these techniques to detect pathogen contaminants. This study found that chlorine, a sanitizer commonly used for fresh produce, induces a VBNC state in the food-borne pathogens Listeria monocytogenes and Salmonella enterica . It was also found that chlorine is ineffective at killing total populations of the pathogens. A life span reduction was observed in Caenorhabditis elegans that ingested these VBNC pathogens, with VBNC L. monocytogenes as infectious as its culturable counterpart. These data show that VBNC food-borne pathogens can both be generated and avoid detection by industrial practices while potentially retaining the ability to cause disease.
Host–Pathogen Interaction in Invasive Salmonellosis
Salmonella enterica infections result in diverse clinical manifestations. Typhoid fever, caused by S. enterica serovar Typhi (S. Typhi) and S. Paratyphi A, is a bacteremic illness but whose clinical features differ from other Gram-negative bacteremias. Non-typhoidal Salmonella (NTS) serovars cause self-limiting diarrhea with occasional secondary bacteremia. Primary NTS bacteremia can occur in the immunocompromised host and infants in sub-Saharan Africa. Recent studies on host-pathogen interactions in Salmonellosis using genome sequencing, murine models, and patient studies have provided new insights. The full genome sequences of numerous S. enterica serovars have been determined. The S. Typhi genome, compared to that of S. Typhimurium, harbors many inactivated or disrupted genes. This can partly explain the different immune responses both serovars induce upon entering their host. Similar genome degradation is also observed in the ST313 S. Typhimurium strain implicated in invasive infection in sub-Saharan Africa. Virulence factors, most notably, type III secretion systems, Vi antigen, lipopolysaccharide and other surface polysaccharides, flagella, and various factors essential for the intracellular life cycle of S. enterica have been characterized. Genes for these factors are commonly carried on Salmonella Pathogenicity Islands (SPIs). Plasmids also carry putative virulence-associated genes as well as those responsible for antimicrobial resistance. The interaction of Salmonella pathogen-associated molecular patterns (PAMPs) with Toll-like receptors (TLRs) and NOD-like receptors (NLRs) leads to inflammasome formation, activation, and recruitment of neutrophils and macrophages and the production of pro-inflammatory cytokines, most notably interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and interferon-gamma (IFN)-γ. The gut microbiome may be an important modulator of this immune response. S. Typhimurium usually causes a local intestinal immune response, whereas S. Typhi, by preventing neutrophil attraction resulting from activation of TLRs, evades the local response and causes systemic infection. Potential new therapeutic strategies may lead from an increased understanding of infection pathogenesis.
Genomic analyses of multidrug-resistant Salmonella Indiana, Typhimurium, and Enteritidis isolates using MinION and MiSeq sequencing technologies
We sequenced 25 isolates of phenotypically multidrug-resistant Salmonella Indiana (n = 11), Typhimurium (n = 8), and Enteritidis (n = 6) using both MinION long-read [SQK-LSK109 and flow cell (R9.4.1)] and MiSeq short-read (Nextera XT and MiSeq Reagent Kit v2) sequencing technologies to determine the advantages of each approach in terms of the characteristics of genome structure, antimicrobial resistance (AMR), virulence potential, whole-genome phylogeny, and pan-genome. The MinION reads were base-called in real-time using MinKnow 3.4.8 integrated with Guppy 3.0.7. The long-read-only assembly, Illumina-only assembly, and hybrid assembly pipelines of Unicycler 0.4.8 were used to generate the MinION, MiSeq, and hybrid assemblies, respectively. The MinION assemblies were highly contiguous compared to the MiSeq assemblies but lacked accuracy, a deficiency that was mitigated by adding the MiSeq short reads through the Unicycler hybrid assembly which corrected erroneous single nucleotide polymorphisms (SNPs). The MinION assemblies provided similar predictions of AMR and virulence potential compared to the MiSeq and hybrid assemblies, although they produced more total false negatives of AMR genotypes, primarily due to failure in identifying tetracycline resistance genes in 11 of the 19 MinION assemblies of tetracycline-resistant isolates. The MinION assemblies displayed a large genetic distance from their corresponding MiSeq and hybrid assemblies on the whole-genome phylogenetic tree, indicating that the lower read accuracy of MinION sequencing caused incorrect clustering. The pan-genome of the MinION assemblies contained significantly more accessory genes and less core genes compared to the MiSeq and hybrid assemblies, suggesting that although these assemblies were more contiguous, their sequencing errors reduced accurate genome annotations. Our research demonstrates that MinION sequencing by itself provides an efficient assessment of the genome structure, antimicrobial resistance, and virulence potential of Salmonella; however, it is not sufficient for whole-genome phylogenetic and pan-genome analyses. MinION in combination with MiSeq facilitated the most accurate genomic analyses.
Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica
Emerging pathogens are a major threat to public health, however understanding how pathogens adapt to new niches remains a challenge. New methods are urgently required to provide functional insights into pathogens from the massive genomic data sets now being generated from routine pathogen surveillance for epidemiological purposes. Here, we measure the burden of atypical mutations in protein coding genes across independently evolved Salmonella enterica lineages, and use these as input to train a random forest classifier to identify strains associated with extraintestinal disease. Members of the species fall along a continuum, from pathovars which cause gastrointestinal infection and low mortality, associated with a broad host-range, to those that cause invasive infection and high mortality, associated with a narrowed host range. Our random forest classifier learned to perfectly discriminate long-established gastrointestinal and invasive serovars of Salmonella. Additionally, it was able to discriminate recently emerged Salmonella Enteritidis and Typhimurium lineages associated with invasive disease in immunocompromised populations in sub-Saharan Africa, and within-host adaptation to invasive infection. We dissect the architecture of the model to identify the genes that were most informative of phenotype, revealing a common theme of degradation of metabolic pathways in extraintestinal lineages. This approach accurately identifies patterns of gene degradation and diversifying selection specific to invasive serovars that have been captured by more labour-intensive investigations, but can be readily scaled to larger analyses.
Structure classification of the proteins from Salmonella enterica pangenome revealed novel potential pathogenicity islands
Salmonella enterica is a pathogenic bacterium known for causing severe typhoid fever in humans, making it important to study due to its potential health risks and significant impact on public health. This study provides evolutionary classification of proteins from Salmonella enterica pangenome. We classified 17,238 domains from 13,147 proteins from 79,758 Salmonella enterica strains and studied in detail domains of 272 proteins from 14 characterized Salmonella pathogenicity islands (SPIs). Among SPIs-related proteins, 90 proteins function in the secretion machinery. 41% domains of SPI proteins have no previous sequence annotation. By comparing clinical and environmental isolates, we identified 3682 proteins that are overrepresented in clinical group that we consider as potentially pathogenic. Among domains of potentially pathogenic proteins only 50% domains were annotated by sequence methods previously. Moreover, 36% (1330 out of 3682) of potentially pathogenic proteins cannot be classified into Evolutionary Classification of Protein Domains database (ECOD). Among classified domains of potentially pathogenic proteins the most populated homology groups include helix-turn-helix (HTH), Immunoglobulin-related, and P-loop domains-related. Functional analysis revealed overrepresentation of these protein in biological processes related to viral entry into host cell, antibiotic biosynthesis, DNA metabolism and conformation change, and underrepresentation in translational processes. Analysis of the potentially pathogenic proteins indicates that they form 119 clusters or novel potential pathogenicity islands (NPPIs) within the Salmonella genome, suggesting their potential contribution to the bacterium’s virulence. One of the NPPIs revealed significant overrepresentation of potentially pathogenic proteins. Overall, our analysis revealed that identified potentially pathogenic proteins are poorly studied.
Genomic characterization of foodborne Salmonella enterica and Escherichia coli isolates from Saboba district and Bolgatanga Municipality Ghana
Salmonella enterica and Escherichia coli are well-known bacteria commonly associated with foodborne illnesses in humans and animals. Genomic characterization of these pathogens provides valuable insights into their evolution, virulence factors and resistance determinants. This study aimed to characterized previously isolated Salmonella (n = 14) and E . coli (n = 19) from milk, meat and its associated utensils in Ghana using whole-genome sequencing. Most of the Salmonella serovars (Fresno, Plymouth, Infantis, Give and Orleans) identified in this study are yet to be reported in Ghana. Most Salmonella isolates were pan-sensitive, but genes conferring resistance to fosfomycin ( fosA7 . 2 ) and tetracycline ( tet(A) ) were detected in one and three isolates, respectively. Seven of the Salmonella isolates carried the IncI1-I(Gamma) plasmid replicon. Although antimicrobial resistance was not common among Salmonella strains, most (11/19) of the E . coli strains had at least one resistance gene, with nearly half (8/19) being multidrug resistant and carried plasmids. Three of the 19 E . coli strains belonged to serovars commonly associated with enteroaggregative E . coli (EAEC) pathotype. While strains belonging to virulence-associated lineages lacked key plasmid-encoded virulence plasmids, several plasmid replicons were detected in most of the E . coli (14/19) strains. Food contaminated with these pathogens can serve as a vehicle for disease transmission, posing a significant public health risk and necessitating stringent food safety and hygiene practices to prevent outbreaks. Hence, there is need for continuous surveillance and preventive measures to stop the spread of foodborne pathogens and reduce the risk of associated illnesses in Ghana.
Polarity effects, resistance, and probiotic enhancement of intoxication of Salmonella enterica fraB mutants in murine models
FraB is a deglycase in a metabolic pathway that allows Salmonella to utilize fructose-asparagine (F-Asn). Some fraB mutants are sensitive to F-Asn due to the accumulation of 6-phosphofructose-aspartate (6-P-F-Asp), a toxic intermediate in this pathway. We determined that different alleles of fraB cause different amounts of 6-P-F-Asp-mediated toxicity due to effects on the expression of the downstream gene, fraD , a kinase. Mutations in fraD or fraA (a transporter) cause resistance to F-Asn intoxication, and these mutations occur during infection. To better mimic the effect of a hypothetical FraB inhibitor in mouse models, we characterized a non-polar mutant encoding a catalytically inactive FraB (FraB E214A). We also compared a typical mouse chow and a high-fat chow and found that the latter decreases the variation in colonization typically observed during infection of CBA/J mice with Salmonella . Because the high-fat chow lacks F-Asn, the fraB E214A mutant was not attenuated in mice fed this diet unless F-Asn was supplemented. F-Asn supplementation resulted in a 100-fold reduction of colony forming units (CFU) recovered from feces compared to wild-type. Co-infection of Salmonella with a Salmonella “probiotic” strain that is neither virulent nor capable of consuming F-Asn (a SPI1 SPI2 fraR-BDAE ansB mutant) led to a dramatic 10,000-fold reduction in CFU and a 1000-fold reduction in lipocalin-2, a proxy marker of inflammation. This probiotic strain presumably competes for nutrients other than F-Asn, driving the fraB mutant to consume a higher proportion of F-Asn and greater 6-P-F-Asp intoxication. Thus, a putative inhibitor of FraB, when administered with F-Asn and a probiotic, may provide a new therapeutic strategy for treating Salmonella gastroenteritis.
A Perspective on Invasive Salmonella Disease in Africa
Salmonella enterica is a leading cause of community-acquired bloodstream infection in Africa. The contribution of typhoidal and nontyphoidal Salmonella serovars to invasive disease varies considerably in place and time, even within the same country. Nonetheless, many African countries are now thought to experience typhoid fever incidence >100 per 100 000 per year with approximately 1% of patients dying. Invasive nontyphoidal Salmonella (iNTS) disease was estimated to cause 3.4 million illnesses and 681 316 deaths in 2010, with the most disease in Africa. Antimicrobial drug resistance is a growing problem in S. enterica that threatens to further compromise patient outcomes. Reservoirs for nontyphoidal Salmonella and the predominant routes of transmission for typhoidal and nontyphoidal Salmonella are not well understood in Africa, hampering the design of evidence-based, non-vaccine- and vaccine-based prevention measures. It is difficult to distinguish clinically invasive Salmonella disease from febrile illnesses caused by other pathogens. Blood cultures are the mainstay of laboratory diagnosis, but lack sensitivity due to the low magnitude of bacteremia, do not produce results at point of care, and are not widely available in Africa. Serologic approaches to diagnosis remain inaccurate, and nucleic acid amplification tests are also compromised by low concentrations of bacteria. High-throughput whole-genome sequencing, together with a range of novel analytic pipelines, has provided new insights into the complex pattern of epidemiology, pathogenesis, and host adaptation. Concerted efforts are therefore needed to apply these new tools in the context of high-quality field surveillance to improve diagnosis, patient management, control, and prevention of invasive Salmonella infections in Africa.