Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,476
result(s) for
"Samos"
Sort by:
Performance of structures in İzmir after the Samos island earthquake
2022
The October 30, 2020 Earthquake caused unexpectedly significant damage in İzmir considering its distance to the city. This paper evaluates the recorded ground motions, summarizes the performance of structures affected from the earthquake with emphasis on the reasons of damage. A detailed damage assessment was carried out by the Earthquake Engineering Research Center of Middle East Technical University to compile data on the damage of RC and masonry buildings. It was observed that majority of the damage was concentrated in the Bayraklı district due to its peculiar soil properties where many 7–10 story mid-rise RC buildings suffered heavy damage and collapse. The level of amplified ground motions combined with deficiencies of apparently non-code compliant buildings exacerbated the damage. The main reasons of damage were mainly attributed to the presence of soft stories, lack of proper detailing, poor construction quality, presence of heavy overhangs, and hence significant lack of code-compliance in essence. The influence of infill walls on seismic performance of deficient and inadequate buildings was clearly seen in this earthquake. This paper also discusses seismic code requirements in effect and their influence on the observed building performance. The recorded ground motions were compared with the code spectra to evaluate the performance of the buildings. The code response spectra were found to be well above the recorded ground motion spectra at the sites where significant damage was observed.
Journal Article
Characteristics of the 2020 Samos earthquake (Aegean Sea) using seismic data
2022
The 30 October 2020 Samos earthquake (Mw 7.0) ruptured an east–west striking, north dipping normal fault located offshore the northern coast of Samos Island, previously inferred from the bathymetry and regional tectonics. This fault, reported in the fault-databases as the North Samos and/or Kaystrios Fault, ruptured with almost pure dip-slip motion, in a region where both active extension and strike-slip deformation coexist. Historical information for the area confirms that similar ~ Mw7 events had also occurred in the broader Samos area, though none of the recent (last ~ 300 years) mainshocks appears to have ruptured the same fault. The spatial and temporal distribution of relocated aftershocks indicates triggering of nearby strike-slip and normal fault segments, situated in the areas where static stress has increased due to the mainshock generation. The relocated aftershocks and the slip model indicate that the sequence ruptured the upper crust (mainly the depth range 3–15 km). The top of the rupture plane nearly reached the sea bottom, located at a depth of < 1 km. Slip is confined in mainly two asperities, both located up-dip from the hypocenter and at shallow depths. The average displacement is ~ 1 m and the peak slip is ~ 3.5 m for a shear modulus of 3.2e10 N/m2. While it is difficult to constrain the rupture velocity in the inversions, the model suggests a slow rupture speed of the order of 2.2 km/s. The resolved source duration is ~ 16 s, compatible with the ~ 32 km length of the fault that ruptured.
Journal Article
EdgePhase: A Deep Learning Model for Multi‐Station Seismic Phase Picking
2022
In this study, we build a multi‐station phase‐picking model named EdgePhase by integrating an Edge Convolutional module with a state‐of‐the‐art single‐station phase‐picking model, EQTransformer. The Edge Convolutional module, a variant of Graph Neural Network, exchanges information relevant to seismic phases between neighboring stations. In EdgePhase, seismograms are first encoded into the latent representations, then converted into enhanced representations by the Edge Convolutional module, and finally decoded into the P‐ and S‐phase probabilities. Compared to the standard EQTransformer, EdgePhase increases the precision (fraction of phase identifications that are real) and recall (fraction of phase arrivals that are identified) rate by 5% on our training and test data sets of Southern California earthquakes. To evaluate its performance in regions of different tectonic settings, we applied EdgePhase to detect the early aftershocks following the 2020 M7.0 Samos, Greece earthquake. Compared to a local earthquake catalog, EdgePhase produced 190% additional detections with an event distribution more conformative to a planar fault interface, suggesting higher fidelity in event locations. This case study indicates that EdgePhase provides a strong regional generalization capability in real‐world applications. Plain Language Summary Identifying seismic phases from continuous waveforms is an important task for earthquake monitoring and early warning systems. Traditional phase recognition methods include visual inspection and detections based on mathematical functions (e.g., STA/LTA, kurtosis, AIC). Recently, machine learning technology has been applied to this task because of its fast operation speed and complete automation. A variety of neural‐network‐based models take the waveforms of a single station as input and predict the P‐phases and S‐phases. In this study, we improve the model performance by taking into account the mutually consistent features in multiple stations. We incorporate a Graph Neural Network module to exchange information relevant to seismic phases between neighboring stations. Compared to the standard single station model, our multi‐station model performs better on seismic data in Southern California in terms of the precision and recall rate. We also tested our model on the 2020 M7.0 Greece, Samos Earthquake and found that it detected significantly more aftershocks compared to local catalogs in the first month after the mainshock. Key Points We developed EdgePhase, a multi‐station phase‐picking model, by fine‐tuning EQTransformer with Graphic Neural Networks Compared to the standard EQTransformer, EdgePhase increases the F1 score by 5% on the Southern California Seismic data set Performance evaluation of EdgePhase shows its strong generalization ability in real‐world applications
Journal Article
The Samos Island (Aegean Sea) M7.0 earthquake: analysis and engineering implications of strong motion data
2022
We present a dataset of 77 strong ground motion records within 200 km epicentral distance from the 30 October 2020, M7.0 Samos Island (Aegean Sea) earthquake, which affected Greece and Turkey. Accelerograms from National Networks of both countries have been merged into a single dataset, including metadata that have been uniformly derived using a common preliminary source model. Initial findings from the analysis and comparative examination of acceleration time histories, Fourier amplitude spectra and 5%-damped response spectra are discussed along with significant source, propagation path and site effects. The long-period amplifications observed in most records in Izmir bay triggered failures and severe damages in weak structures. Yet, the spectral accelerations are observed to lie below the current and previous design spectra corresponding to the damaged regions. Peak ground motions are used to construct a purely instrumental-based macroseismic intensity map, which is capable of reflecting the actual earthquake damage caused by this considerably large event. Finally, peak ground motions are compared to various ground motion models (GMMs) and deviations are highlighted. Our overall preliminary analysis reveals a strong energy signature of the Samos earthquake in the period range 0.5–1.5 s at many sites, both on rock and soil, whereas records in the heavily hit Izmir city, at an epicentral distance circa 70 km, provide strong indication for additional amplification due to basin effects. At relatively large distance from the earthquake source (> 120 km), several recorded amplitudes are significantly lower than those predicted by many GMMs, implying that further studies are necessary toward the improvement of regional attenuation models.
Journal Article
Geotechnical reconnaissance findings of the October 30 2020, Mw7.0 Samos Island (Aegean Sea) earthquake
by
Al-Suhaily, Ahmed
,
Ozener, Pelin Tohumcu
,
Gulerce, Zeynep
in
Bridges
,
Dam engineering
,
Earthquake damage
2022
On October 30, 2020 14:51 (UTC), a moment magnitude (Mw) of 7.0 (USGS, EMSC) earthquake occurred in the Aegean Sea north of the island of Samos, Greece. Turkish and Hellenic geotechnical reconnaissance teams were deployed immediately after the event and their findings are documented herein. The predominantly observed failure mechanism was that of earthquake-induced liquefaction and its associated impacts. Such failures are presented and discussed together with a preliminary assessment of the performance of building foundations, slopes and deep excavations, retaining structures and quay walls. On the Anatolian side (Turkey), and with the exception of the Izmir-Bayrakli region where significant site effects were observed, no major geotechnical effects were observed in the form of foundation failures, surface manifestation of liquefaction and lateral soil spreading, rock falls/landslides, failures of deep excavations, retaining structures, quay walls, and subway tunnels. In Samos (Greece), evidence of liquefaction, lateral spreading and damage to quay walls in ports were observed on the northern side of the island. Despite the proximity to the fault (about 10 km), the amplitude and the duration of shaking, the associated liquefaction phenomena were not pervasive. It is further unclear whether the damage to quay walls was due to liquefaction of the underlying soil, or merely due to the inertia of those structures, in conjunction with the presence of soft (yet not necessarily liquefied) foundation soil. A number of rockfalls/landslides were observed but the relevant phenomena were not particularly severe. Similar to the Anatolian side, no failures of engineered retaining structures and major infrastructure such as dams, bridges, viaducts, tunnels were observed in the island of Samos which can be mostly attributed to the lack of such infrastructure.
Journal Article
The role of site effects on elevated seismic demands and corollary structural damage during the October 30, 2020, M7.0 Samos Island (Aegean Sea) Earthquake
2022
On October 30, 2020 14:51 (UTC), a moment magnitude (M) 7.0 (USGS, EMSC) earthquake occurred in the Aegean Sea. This paper presents the reconnaissance findings regarding the site effects on recorded strong ground motion intensities and duration, along with the resulting induced-structural damage in Izmir Bay and Samos Island, respectively. In all rock records, relatively high intensity long period rock spectral accelerations were observed in the mid to long period range of 0.5–1.5 s, which are attributed to the source, more specifically, to the slower rupture-mechanism of the event. These rich spectral intensities were further amplified by soil site effects and soil-superstructure resonance, leading to two to six times amplified overall responses and prolonged seismic shaking durations, more pronounced in Bayrakli and other Izmir Bay sites in Turkey. However, these amplified and prolonged excitations are still below design basis earthquake levels, which addresses the lack of proper structural design and construction deficiencies, as the underlying causes for the collapse to heavy damage performance of 795 buildings. On the other hand, although located only about 10 km from the rupture (22 km from the epicenter) and within the near fault zone, the town of Vathy on Samos Island (Greece) was rather lightly affected by the earthquake, with relatively few collapsed or heavily damaged buildings, partially attributed to the low height/low weight of structures in the area. However, a concentration of damage in low-rise buildings in Ano Vathy hill is considered indicative of a combination of coupled valley and topography effects on the strong motion. This event once again addressed the need to develop region-specific zonation and provisions, when more general code practices are proven to be inadequate to assess these extreme site effects.
Journal Article
Field reconnaissance and structural assessment of the October 30, 2020, Samos, Aegean Sea earthquake: an example of severe damage due to the basin effect
2022
An earthquake with a magnitude ranging from Mw = 6.9 (KOERI) to Mw = 7.0 (USGS) struck Samos Island in the Aegean Sea on October 30, 2020, with an epicentre 70 kms from the İzmir city centre in Turkey. The earthquake took place at 14:51 local time (11:51 UTC). The peak ground acceleration (PGA) of this earthquake was recorded to be 0.179 g at the epicentre of the earthquake. This earthquake occurred at a depth of 17.26 km (AFAD (2020) İzmir Earthquake Report, (In Turkish)) and lasted 16 s. The main shock from the earthquake triggered a tsunami that hit the building stocks built near the coast. During the gradual deregulation of COVID-19 pandemic regulations, various events caused considerable damage to the building stock, particularly in the Izmir Seferihisar and Bayraklı regions and resulted in a massive disruption of daily habits. The main shock caused 117 deaths in both Turkey and Greece, and 1632 people were also injured in Turkey. Moreover, several injuries occurred in Greece. A total of 103 buildings collapsed, 700 were severely damaged, 814 buildings were moderately damaged, and 7889 were slightly damaged. The basic aim of this paper is to briefly present the past and present seismotectonic characteristics of the region, present building stock, and former structural conditions before the earthquake, assess structural performance and classify distinguished earthquake-induced failures and damage due to the basin effect.
Journal Article
The 30 October 2020 Aegean Sea Tsunami: Post-Event Field Survey Along Turkish Coast
2021
On 30 October 2020, a strong normal-faulting earthquake struck Samos Island in Greece and İzmir Province in Turkey, both in the eastern Aegean Sea. The earthquake generated a tsunami that hit the coasts of Samos Island, Greece and İzmir, Turkey. National teams performed two post-tsunami field surveys on 31 October to 1 November 2020, and 4–6 November 2020, along the Turkish coastline; while the former was a quick survey on the days following the tsunami, the latter involved more detailed measurement and investigation focusing on a ~ 110-km-long coastline extending from Alaçatı (Çeşme District of İzmir) to Gümüldür (Menderes District of İzmir). The survey teams measured runup and tsunami heights, flow depths, and inundation distances at more than 120 points at eight different localities. The largest tsunami runup among the surveyed locations was measured as 3.8 m in Akarca at a distance of 91 m from the shoreline. The maximum tsunami height of 2.3 m (with a flow depth of 1.4 m) was observed at Kaleiçi region in Sığacık, where the most severe tsunami damage was observed. There, the maximum runup height was measured as 1.9 m at the northeastern side of the bay. The survey team also investigated tsunami damage to coastal structures, noticing a gradual decrease in the impact from Gümüldür to further southeast. The findings of this field survey provide insights into the coastal impact of local tsunamis in the Aegean Sea.
Journal Article
Field survey of the 30 October 2020 Samos (Aegean Sea) tsunami in the Greek islands
2022
On October 30th, 2020, a magnitude 7.0 earthquake offshore off the northern coast of Samos, Greece, generated a tsunami that impacted the nearshore Greek islands and the Aegean coastline of Turkey. Here, we describe detailed results from several post-event field surveys, and report first wave arrival timing and polarity information as well as tsunami height/runup measurements, from five islands. In Chios, wave runup reached 1.38 m, in Samos ~ 3 m, in Fourni 1.57 m, in Thimena 1.46 m, and in Ikaria 1.18 m. This event marks two milestones. One, the General Secretariat for Civil Protection of Greece, disseminated a message through Greece's 1–1-2 Emergency Communications Service to all cell phones in the eastern Aegean geographical region, warning recipients to stay away from coastal areas. According to eyewitnesses, the message was received ~ 3–5 min prior to the second and largest flood in Vathi, as the first flood had not sufficiently alarmed the local authorities to evacuate residents. Two, we were able to infer complete tsunami hydrographs from measurements for the first two floods in Vathi, which suggests that the water level rose to about one meter overland flow depth in one minute.
Journal Article
Reconnaissance of 2020 M 7.0 Samos Island (Aegean Sea) earthquake
2022
The Samos Island (Aegean Sea) Earthquake occurred on 30 October 2020. It produced a tsunami that impacted coastal communities, ground shaking that was locally amplified in some areas and that led to collapse of structures with 118 fatalities in both Greece and Turkey, and wide-ranging geotechnical effects including rockfalls, landsliding, and liquefaction. As a result of the global COVID-19 pandemic, the reconnaissance of this event did not involve the deployment of international teams, as would be typical for an event of this size. Instead, following initial deployments of separate Greek and Turkish teams, the reconnaissance and documentation efforts were managed in a coordinated manner with the assistance of international partners. This coordination ultimately produced a multi-agency joint report published on the 2-month anniversary of the earthquake, and this special issue. This paper provides an overview of the reconnaissance activities undertaken to document the effects of this important event and summarizes key lessons spanning topic areas from seismology to emergency response.
Journal Article