Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
43,124
result(s) for
"Scenes"
Sort by:
Zoom in on crime scenes
by
Spilsbury, Richard, 1963-
,
Spilsbury, Richard, 1963- Zoom in on--
in
Crime scenes Juvenile literature.
,
Criminal investigations Juvenile literature.
,
Crime scenes.
2013
\"Get an up-close look at a variety of things that help police solve crimes\"-- Provided by publisher.
SUN Database: Exploring a Large Collection of Scene Categories
by
Ehinger, Krista A.
,
Torralba, Antonio
,
Xiao, Jianxiong
in
Accuracy
,
Analysis
,
Artificial Intelligence
2016
Progress in scene understanding requires reasoning about the rich and diverse visual environments that make up our daily experience. To this end, we propose the Scene Understanding database, a nearly exhaustive collection of scenes categorized at the same level of specificity as human discourse. The database contains 908 distinct scene categories and 131,072 images. Given this data with both scene and object labels available, we perform in-depth analysis of co-occurrence statistics and the contextual relationship. To better understand this large scale taxonomy of scene categories, we perform two human experiments: we quantify human scene recognition accuracy, and we measure how typical each image is of its assigned scene category. Next, we perform computational experiments: scene recognition with global image features, indoor versus outdoor classification, and “scene detection,” in which we relax the assumption that one image depicts only one scene category. Finally, we relate human experiments to machine performance and explore the relationship between human and machine recognition errors and the relationship between image “typicality” and machine recognition accuracy.
Journal Article
3D Semantic Scene Completion: A Survey
by
Verroust-Blondet, Anne
,
Roldão, Luis
,
de Charette, Raoul
in
Datasets
,
Geometry
,
Multiplication
2022
Semantic scene completion (SSC) aims to jointly estimate the complete geometry and semantics of a scene, assuming partial sparse input. In the last years following the multiplication of large-scale 3D datasets, SSC has gained significant momentum in the research community because it holds unresolved challenges. Specifically, SSC lies in the ambiguous completion of large unobserved areas and the weak supervision signal of the ground truth. This led to a substantially increasing number of papers on the matter. This survey aims to identify, compare and analyze the techniques providing a critical analysis of the SSC literature on both methods and datasets. Throughout the paper, we provide an in-depth analysis of the existing works covering all choices made by the authors while highlighting the remaining avenues of research. SSC performance of the SoA on the most popular datasets is also evaluated and analyzed.
Journal Article
Crime scene science : 20 projects and experiments about clues, crimes, criminals, and other mysterious things
by
Young, Karen Romano
,
Goldin, David, ill
in
Criminal investigation Juvenile literature.
,
Crime scenes Juvenile literature.
,
Forensic sciences Juvenile literature.
2009
A collection of 20 crime scene science themed projects. Includes suggestions on effective presentation at science fairs, taking experiments one step further, and using science vocabulary correctly.
Visiting the Invisible: Layer-by-Layer Completed Scene Decomposition
2021
Existing scene understanding systems mainly focus on recognizing the visible parts of a scene, ignoring the intact appearance of physical objects in the real-world. Concurrently, image completion has aimed to create plausible appearance for the invisible regions, but requires a manual mask as input. In this work, we propose a higher-level scene understanding system to tackle both visible and invisible parts of objects and backgrounds in a given scene. Particularly, we built a system to decompose a scene into individual objects, infer their underlying occlusion relationships, and even automatically learn which parts of the objects are occluded that need to be completed. In order to disentangle the occluded relationships of all objects in a complex scene, we use the fact that the front object without being occluded is easy to be identified, detected, and segmented. Our system interleaves the two tasks of instance segmentation and scene completion through multiple iterations, solving for objects layer-by-layer. We first provide a thorough experiment using a new realistically rendered dataset with ground-truths for all invisible regions. To bridge the domain gap to real imagery where ground-truths are unavailable, we then train another model with the pseudo-ground-truths generated from our trained synthesis model. We demonstrate results on a wide variety of datasets and show significant improvement over the state-of-the-art.
Journal Article
Stolen prey
When Marta Dickenson, a well-off accountant and a beloved wife and mother, is murdered, Lieutenant Eve Dallas immerses herself in her billionaire husband Roarke's world of big business to discover who arranged a hit on an innocent woman.
Semantic Understanding of Scenes Through the ADE20K Dataset
2019
Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. Totally there are 25k images of the complex everyday scenes containing a variety of objects in their natural spatial context. On average there are 19.5 instances and 10.5 object classes per image. Based on ADE20K, we construct benchmarks for scene parsing and instance segmentation. We provide baseline performances on both of the benchmarks and re-implement state-of-the-art models for open source. We further evaluate the effect of synchronized batch normalization and find that a reasonably large batch size is crucial for the semantic segmentation performance. We show that the networks trained on ADE20K are able to segment a wide variety of scenes and objects.
Journal Article
Semantic Foggy Scene Understanding with Synthetic Data
by
Sakaridis, Christos
,
Dai, Dengxin
,
Luc Van Gool
in
Artificial neural networks
,
Ground truth
,
Image annotation
2018
This work addresses the problem of semantic foggy scene understanding (SFSU). Although extensive research has been performed on image dehazing and on semantic scene understanding with clear-weather images, little attention has been paid to SFSU. Due to the difficulty of collecting and annotating foggy images, we choose to generate synthetic fog on real images that depict clear-weather outdoor scenes, and then leverage these partially synthetic data for SFSU by employing state-of-the-art convolutional neural networks (CNN). In particular, a complete pipeline to add synthetic fog to real, clear-weather images using incomplete depth information is developed. We apply our fog synthesis on the Cityscapes dataset and generate Foggy Cityscapes with 20,550 images. SFSU is tackled in two ways: (1) with typical supervised learning, and (2) with a novel type of semi-supervised learning, which combines (1) with an unsupervised supervision transfer from clear-weather images to their synthetic foggy counterparts. In addition, we carefully study the usefulness of image dehazing for SFSU. For evaluation, we present Foggy Driving, a dataset with 101 real-world images depicting foggy driving scenes, which come with ground truth annotations for semantic segmentation and object detection. Extensive experiments show that (1) supervised learning with our synthetic data significantly improves the performance of state-of-the-art CNN for SFSU on Foggy Driving; (2) our semi-supervised learning strategy further improves performance; and (3) image dehazing marginally advances SFSU with our learning strategy. The datasets, models and code are made publicly available.
Journal Article