Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
325 result(s) for "Scincidae"
Sort by:
An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental Mabuya lizard
Syncytins are envelope genes from endogenous retroviruses that have been captured during evolution for a function in placentation. They have been found in all placental mammals in which they have been searched, including marsupials. Placental structures are not restricted to mammals but also emerged in some other vertebrates, most frequently in lizards, such as the viviparous Mabuya Scincidae. Here, we performed high-throughput RNA sequencing of a Mabuya placenta transcriptome and screened for the presence of retroviral env genes with a full-length ORF. We identified one such gene, which we named “syncytin-Mab1,” that has all the characteristics expected for a syncytin gene. It encodes a membrane-bound envelope protein with fusogenic activity ex vivo, is expressed at the placental level as revealed by in situ hybridization and immunohistochemistry, and is conserved in all Mabuya species tested, spanning over 25 My of evolution. Its cognate receptor, required for its fusogenic activity, was searched for by a screening assay using the GeneBridge4 human/Chinese hamster radiation hybrid panel and found to be the MPZL1 gene, previously identified in mammals as a signal-transducing transmembrane protein involved in cell migration. Together, these results show that syncytin capture is not restricted to placental mammals, but can also take place in the rare nonmammalian vertebrates in which a viviparous placentotrophic mode of reproduction emerged. It suggests that similar molecular tools have been used for the convergent evolution of placentation in independently evolved and highly distant vertebrates.
Extinct, obscure or imaginary: The lizard species with the smallest ranges
Aim: Small geographic ranges make species especially prone to extinction from anthropogenic disturbances or natural stochastic events. We assemble and analyse a comprehensive dataset of all the world's lizard species and identify the species with the smallest ranges–those known only from their type localities. We compare them to wide-ranging species to infer whether specific geographic regions or biological traits predispose species to have small ranges. Location: Global. Methods: We extensively surveyed museum collections, the primary literature and our own field records to identify all the species of lizards with a maximum linear geographic extent of <10 km. We compared their biogeography, key biological traits and threat status to those of all other lizards. Results: One in seven lizards (927 of the 6,568 currently recognized species) are known only from their type localities. These include 213 species known only from a single specimen. Compared to more wide-ranging taxa, they mostly inhabit relatively inaccessible regions at lower, mostly tropical, latitudes. Surprisingly, we found that burrowing lifestyle is a relatively unimportant driver of small range size. Geckos are especially prone to having tiny ranges, and skinks dominate lists of such species not seen for over 50 years, as well as of species known only from their holotype. Twothirds of these species have no IUCN assessments, and at least 20 are extinct. Main conclusions: Fourteen per cent of lizard diversity is restricted to a single location, often in inaccessible regions. These species are elusive, usually poorly known and little studied. Many face severe extinction risk, but current knowledge is inadequate to properly assess this for all of them. We recommend that such species become the focus of taxonomic, ecological and survey efforts.
Evolution of diel activity patterns in skinks (Squamata: Scincidae), the world’s second-largest family of terrestrial vertebrates
Many animals have strict diel activity patterns, with unique adaptations for either diurnal or nocturnal activity. Diel activity is phylogenetically conserved, yet evolutionary shifts in diel activity occur and lead to important changes in an organism’s morphology, physiology, and behavior. We use phylogenetic comparative methods to examine the evolutionary history of diel activity in skinks, one of the largest families of terrestrial vertebrates. We examine how diel patterns are associated with microhabitat, ambient temperatures, and morphology. We found support for a nondiurnal ancestral skink. Strict diurnality in crown group skinks only evolved during the Paleogene. Nocturnal habits are associated with fossorial activity, limb reduction and loss, and warm temperatures. Our results shed light on the evolution of diel activity patterns in a large radiation of terrestrial ectotherms and reveal how both intrinsic biotic and extrinsic abiotic factors can shape the evolution of animal activity patterns.
Arboreal Space Use of Plestiodon japonicus in Kumamoto Prefecture, Kyushu Island, Japan
This study investigates arboreal behavior in the scincid lizard, Plestiodon japonicus, focusing on populations in mainland Japan. Previous research suggested that the population on the Danjo Islands uses trees for basking, but whether this behavior is widespread or a specific adaptation to the islands remained unclear. To explore this, camera traps were set up in a forest in Kumamoto Prefecture from June 2022 to October 2023, recording lizard behaviors. Climbing behaviors were observed at two sites, with five climbing events recorded over 9,570 camera-days. The lizards moved smoothly along tree trunks, with speeds comparable to arboreal lizards like Anolis. The current findings may provide a reliable record of a specific aspect of the species' broader habitat use.
Density-impact functions for invasive house mouse (Mus musculus) effects on indigenous lizards and invertebrates
House mice are among the most widely distributed mammals in the world, and adversely affect a wide range of indigenous biota. Suppressing mouse populations, however, is difficult and expensive. Cost-effective suppression requires knowing how low to reduce mouse numbers to achieve biodiversity outcomes, but these targets are usually unknown or not based on evidence. We derived density-impact functions (DIFs) for mice and small indigenous fauna in a tussock grass/shrubland ecosystem. We related two indices of mouse abundance to five indices of indigenous lizard and invertebrate abundance measured inside and outside mammal-resistant fences. Eight of 22 DIFs were significantly non-linear, with positive responses of skinks (Oligosoma maccanni, O. polychroma) and ground wētā (Hemiandrus spp.) only where mice were not detected or scarce (< 5% footprint tunnel tracking rate or printing rate based on footprint density). Kōrero geckos (Woodworthia spp.) were rarely detected where mice were present. A further 9 DIFs were not differentiated from null models, but patterns were consistent with impacts at 5% mouse abundance. This study suggests that unless mouse control programmes commit to very low abundances, they risk little return for effort. Impact studies of invasive house mice are largely restricted to island ecosystems. Studies need to be extended to other ecosystems and species to confirm the universality or otherwise of these highly non-linear DIFs.
Thermal physiology: A new dimension of the pace-of-life syndrome
1. Current syndrome research focuses primarily on behaviour with few incorporating components of physiology. One such syndrome is the pace-of-life syndrome (POLS) which describes covariation between behaviour, metabolism, immunity, hormonal response, and life-history traits. Despite the strong effect temperature has on behaviour, thermal physiology has yet to be considered within this syndrome framework. 2. We proposed the POLS to be extended to include a new dimension, the cold-hot axis. Under this premise, it is predicted that thermal physiology and behaviour would covary, whereby individual positioning along the thermal continuum would coincide with that of the behavioural continuum. 3. This hypothesis was tested by measuring thermal traits of delicate skinks (Lamprophoslis delicata) and linking it to their behaviour, Principal components analysis and structural equation modelling were used to determine if traits were structured within the POLS and to characterize the direction of their interactions. 4. Model results supported the inclusion of the cold-hot axis into the POLS and indicated that thermal physiology was the driver of this relationship, in that thermal traits either constrained or promoted activity, exploration, boldness and social behaviour. 5. This study highlights the need to integrate thermal physiology within a syndrome framework.
Going Out on a Limb
The remarkable ability of geckos to adhere to a wide-variety of surfaces has served as an inspiration for hundreds of studies spanning the disciplines of biomechanics, functional morphology, ecology, evolution, materials science, chemistry, and physics. The multifunctional properties (e.g., self-cleaning, controlled releasability, reversibility) and adhesive performance of the gekkotan adhesive system have motivated researchers to design and fabricate gecko-inspired synthetic adhesives of various materials and properties. However, many challenges remain in our attempts to replicate the properties and performance of this complex, hierarchical fibrillar adhesive system, stemming from fundamental, but unanswered, questions about how fibrillar adhesion operates. Such questions involve the role of fibril morphology in adhesive performance and how the gekkotan adhesive apparatus is utilized in nature. Similar fibrillar adhesive systems have, however, evolved independently in two other lineages of lizards (anoles and skinks) and potentially provide alternate avenues for addressing these fundamental questions. Anoles are the most promising group because they have been the subject of intensive ecological and evolutionary study for several decades, are highly speciose, and indeed are advocated as squamate model organisms. Surprisingly, however, comparatively little is known about the morphology, performance, and properties of their convergently-evolved adhesive arrays. Although many researchers consider the performance of the adhesive system of Anolis lizards to be less accomplished than its gekkotan counterpart, we argue here that Anolis lizards are prime candidates for exploring the fundamentals of fibrillar adhesion. Studying the less complex morphology of the anoline adhesive system has the potential to enhance our understanding of fibril morphology and its relationship to the multifunctional performance of fibrillar adhesive systems. Furthermore, the abundance of existing data on the ecology and evolution of anoles provides an excellent framework for testing hypotheses about the influence of habitat microstructure on the performance, behavior, and evolution of lizards with subdigital adhesive pads.
First record of Scincellafansipanensis Okabe, Motokawa, Koizumi, Nguyen, Nguyen & Bui, 2024 (Squamata, Scincidae) from China
The Fansipan ground skink, Okabe, Motokawa, Koizumi, Nguyen, Nguyen & Bui, was recently described from Fansipan Mountain, Lao Cai Province, northern Vietnam. Herein, we report the first national record of this species from China, based on four specimens collected from Ailao Mountain, Jingdong Yi Autonomous County, Yunnan Province. Morphologically, the Chinese specimens are consistent with the type series, but differ slightly in possessing a higher number of ventral scales (including gulars) and relatively shorter fore-limbs. Phylogenetic analyses, based on sequences, place the Chinese specimens within the clade; however, uncorrected -distances of 6.5-7.3% between the Chinese and Vietnamese populations suggest moderate genetic divergence. This level of differentiation may reflect historical isolation by the Red River Basin's complex topography and the low dispersal ability of species. This record raises the number of the genus species known from China to 15.
Integrating thermal physiology within a syndrome
Physiology and temperature can both have a profound influence on behaviour and metabolism. Despite this, thermal physiology has rarely been considered within the animal personality framework, but could be an inherent mechanism maintaining consistent individual differences in behaviour, particularly in species that need to thermoregulate (i.e. ectotherms). Here, we present evidence for a thermal‐behavioural syndrome and detail how it is linked to variation in habitat selection in an Australian lizard, the delicate skink, Lampropholis delicata. We predicted that individuals would occur along a cold–hot continuum—analogues to the slow–fast continuum proposed by the pace‐of‐life hypothesis—whereby an individual's placement along a thermal physiological axis will correspond with their placement along a personality axis. We first tested the thermal‐behavioural syndrome by measuring the thermal preferences and optimal performance temperature of individual skinks and linking it to their activity, exploratory, social and boldness behaviours. In line with our predictions, we found that individuals with a “hot” thermal type performed optimally at higher temperatures, had faster sprint speeds and were more active, explorative and bold relative to “cold” thermal types. We then monitored each individual's habitat selection within an artificial environment containing three microhabitats differing in their thermal characteristics. We found that an individual's thermal type mediated their use of habitat, in which “hot” individuals utilized a hotter microhabitat more regularly than both “cold” and “intermediate” thermal types, suggesting that the thermal‐behavioural syndrome could drive ecological niche partitioning in this species. We envisage that the thermal‐behavioural syndrome concept is likely to extend to other study systems, particularly to ectothermic organisms that rely heavily on behavioural thermoregulation to maintain optimal body temperature. A plain language summary is available for this article. Plain Language Summary
Using Google Trends to Determine Current, Past, and Future Trends in the Reptile Pet Trade
Reptiles are one of the most popular exotic pets in the world, with over a third of all described species currently being traded. However, the most commonly available reptiles are typically non-threatened, captive-bred, and/or domestically obtained, which means they are also largely unregulated and unmonitored, resulting in a large portion of the reptile pet trade remaining unknown. In this study, the past, current, and future trends of the most popular reptiles in the pet trade were examined. Google Trends was used to determine the global popularity of the most popular pets from 2004 to 2020 and compared to the results from an online survey sent to individuals involved in the reptile trade. The most popular pets from the previous five years were also compared globally across regions and countries. The results determined that the most popular reptile species during the last decade is by far bearded dragons, followed by ball pythons and leopard geckos. Although the survey results were similar when asked what the top reptiles were, most respondents named ball pythons as the most popular reptile. However, when asked what reptiles had lost the most popularity during the previous decade, the survey respondents named green iguanas, Burmese pythons, chameleons, red-eared sliders, and green anoles, concurring with what was found with Google Trends. The reptiles thought to be more popular in the upcoming decade by the survey participants were blue-tongued skinks, tegus, uromastyx, crested geckos, and ball pythons—most of which did indeed show an increase in popularity during the last decade, as indicated with Google Trends. The results from Google Trends demonstrated that ball pythons and crested geckos have increased their popularity more than any other reptile in the last two decades. Reptile popularity also differed between countries, with bearded dragons the most popular reptile in Australia, Western Europe, the U.S., and Canada. Leopard geckos were the most popular reptile in Italy and Turkey, and ball pythons were the reptile of choice in Mexico, Indonesia, and India. The general finding of this study is that the reptiles declining in popularity were mostly wild-caught or restricted due to regulations, while current and future species were captive-bred and available in many varieties or morphs. The most popular species were also docile, medium-sized, and easy to handle, with relatively simple care requirements. This study demonstrates that Google Trends can be a useful tool for determining relative popularity among reptiles, or any other pet group, with results closely mirroring those obtained through direct surveying of people involved in the pet trade. However, unlike surveys, this analysis is quick, quantifiable, and can show what is popular and in-demand not only at the global level but at much finer scales. Thus, Google Trends can be a valuable tool in many research applications, especially in topics that may otherwise be difficult to monitor and quantify.