Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
13,702
result(s) for
"Sea transportation"
Sort by:
Traveling the blue road : poems of the sea
by
Butson, Denver, 1965- author
,
Dotlich, Rebecca Kai, author
,
Engle, Margarita, author
in
Sea poetry.
,
JUVENILE NONFICTION / Adventure & Adventurers.
,
JUVENILE NONFICTION / Poetry.
2017
Gorgeous illustrations surround a collection of poetry written for children about the magic, beauty, and promise of sea voyages. Compiled and edited by award-winning poet Lee Bennett Hopkins, the poems describe how the sea has historically shone as a metaphor for hope and despair and served as a pathway for people searching for new life, including poems about the pilgrims coming to the New World, the Mariel boatlift, the Vietnamese boat people, a Dutch slave ship, the current migration situation in the Mediterranean, and the voyage of the St. Louis.
A Branch-Price-and-Cut Algorithm for Single-Product Maritime Inventory Routing
by
Furman, Kevin C.
,
Savelsbergh, Martin W. P.
,
Nemhauser, George L.
in
Algorithms
,
Analysis
,
Applied sciences
2012
A branch-price-and-cut algorithm is developed for a complex maritime inventory-routing problem with varying storage capacities and production/consumption rates at facilities. The resulting mixed-integer pricing problem is solved exactly and efficiently using a dynamic program that exploits certain \"extremal\" characteristics of the pricing problem. The formulation is tightened by using the problem's boundary conditions in preprocessing and to restrict the set of columns that are produced by the pricing problem. Branching schemes and cuts are introduced that can be implemented efficiently and that preserve the structure of the pricing problem. Some of the cuts are inspired by the capacity cuts known for the vehicle-routing problem, whereas others specifically target fractional solutions brought about by individual vessels \"competing\" for limited inventory at load ports and limited storage capacity at discharge ports. The branch-price-and-cut approach solves practically sized problems motivated by the operations of an oil company to optimality, and it provides reasonable bounds for larger instances.
Journal Article
An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs
2011
This paper studies two tactical level decision problems arising in transshipment hubs: berth template planning that is concerned with allocating berths and quay cranes to arriving vessels, and yard template planning that is concerned with assigning yard storage locations to vessels. These two tactical level decisions interact with each other. A mixed-integer programming model is proposed to integrate the berth template and the yard template planning with the aim to minimize the service cost that is incurred by the deviation from vessels' expected turnaround time intervals, and the operation cost that is related to the route length of transshipment container flows in yard. Moreover, a heuristic algorithm is developed for solving the problem in large-scale realistic environments. Numerical experiments are conducted to prove the necessity of the proposed model and also validate the efficiency of the proposed heuristic algorithm. For a set of real-world like instances, the heuristic algorithm can obtain good berth and yard templates within a reasonable time.
Journal Article
Closure of the Global Overturning Circulation Through the Indian, Pacific, and Southern Oceans
2013
The overturning pathways for the surface-ventilated North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) and the diffusively formed Indian Deep Water (IDW) and Pacific Deep Water (PDW) are intertwined. The global overturning circulation (GOC) includes both large wind-driven upwelling in the Southern Ocean and important internal diapycnal transformation in the deep Indian and Pacific Oceans. All three northern-source Deep Waters (NADW, IDW, PDW) move southward and upwell in the Southern Ocean. AABW is produced from the denser, salty NADW and a portion of the lighter, low oxygen IDW/PDW that upwells above and north of NADW. The remaining upwelled IDW/PDW stays near the surface, moving into the subtropical thermoclines, and ultimately sources about one-third of the NADW. Another third of the NADW comes from AABW upwelling in the Atlantic. The remaining third comes from AABW upwelling to the thermocline in the Indian-Pacific. Atlantic cooling associated with NADW formation (0.3 PW north of 32°S; 1 PW = 1015W) and Southern Ocean cooling associated with AABW formation (0.4 PW south of 32°S) are balanced mostly by 0.6 PW of deep diffusive heating in the Indian and Pacific Oceans; only 0.1 PW is gained at the surface in the Southern Ocean. Thus, while an adiabatic model of NADW global overturning driven by winds in the Southern Ocean, with buoyancy added only at the surface in the Southern Ocean, is a useful dynamical idealization, the associated heat changes require full participation of the diffusive Indian and Pacific Oceans, with a basinaveraged diffusivity on the order of the Munk value of 10⁻⁴ m² s⁻¹.
Journal Article
Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat
by
Årthun, M.
,
Eldevik, T.
,
Skagseth, Ø.
in
Climate change
,
Earth, ocean, space
,
Exact sciences and technology
2012
The recent Arctic winter sea ice retreat is most pronounced in the Barents Sea. Using available observations of the Atlantic inflow to the Barents Sea and results from a regional ice–ocean model the authors assess and quantify the role of inflowing heat anomalies on sea ice variability. The interannual variability and longer-term decrease in sea ice area reflect the variability of the Atlantic inflow, both in observations and model simulations. During the last decade (1998–2008) the reduction in annual (July–June) sea ice area was 218 × 10³ km², or close to 50%. This reduction has occurred concurrent with an increase in observed Atlantic heat transport due to both strengthening and warming of the inflow. Modeled interannual variations in sea ice area between 1948 and 2007 are associated with anomalous heat transport (r= -0.63) with a 70 × 10³ km² decrease per 10 TW input of heat. Based on the simulated ocean heat budget it is found that the heat transport into the western Barents Sea sets the boundary of the ice-free Atlantic domain and, hence, the sea ice extent. The regional heat content and heat loss to the atmosphere scale with the area of open ocean as a consequence. Recent sea ice loss is thus largely caused by an increasing ‘‘Atlantification’’ of the Barents Sea.
Journal Article
The CCSM4 Ocean Component
by
Peacock, Synte
,
Large, William G.
,
Danabasoglu, Gokhan
in
Abyssal zone
,
Atmospheric models
,
Bias
2012
The ocean component of the Community Climate System Model version 4 (CCSM4) is described, and its solutions from the twentieth-century (20C) simulations are documented in comparison with observations and those of CCSM3. The improvements to the ocean model physical processes include new parameterizations to represent previously missing physics and modifications of existing parameterizations to incorporate recent new developments. In comparison with CCSM3, the new solutions show some significant improvements that can be attributed to these model changes. These include a better equatorial current structure, a sharper thermocline, and elimination of the cold bias of the equatorial cold tongue all in the Pacific Ocean; reduced sea surface temperature (SST) and salinity biases along the North Atlantic Current path; and much smaller potential temperature and salinity biases in the near-surface Pacific Ocean. Other improvements include a global-mean SST that is more consistent with the present-day observations due to a different spinup procedure from that used in CCSM3. Despite these improvements, many of the biases present in CCSM3 still exist in CCSM4. A major concern continues to be the substantial heat content loss in the ocean during the preindustrial control simulation from which the 20C cases start. This heat loss largely reflects the top of the atmospheric model heat loss rate in the coupled system, and it essentially determines the abyssal ocean potential temperature biases in the 20C simulations. There is also a deep salty bias in all basins. As a result of this latter bias in the deep North Atlantic, the parameterized overflow waters cannot penetrate much deeper than in CCSM3.
Journal Article
The GFDL CM3 Coupled Climate Model
by
Horowitz, Larry W.
,
Gnanadesikan, Anand
,
Donner, Leo J.
in
Arctic sea ice
,
Atmosphere
,
Atmospheric models
2011
This paper documents time mean simulation characteristics from the ocean and sea ice components in a new coupled climate model developed at the NOAA Geophysical Fluid Dynamics Laboratory (GFDL). The GFDL Climate Model version 3 (CM3) is formulated with effectively the same ocean and sea ice components as the earlier CM2.1 yet with extensive developments made to the atmosphere and land model components. Both CM2.1 and CM3 show stable mean climate indices, such as large-scale circulation and sea surface temperatures (SSTs). There are notable improvements in the CM3 climate simulation relative to CM2.1, including a modified SST bias pattern and reduced biases in the Arctic sea ice cover. The authors anticipate SST differences between CM2.1 and CM3 in lower latitudes through analysis of the atmospheric fluxes at the ocean surface in corresponding Atmospheric Model Intercomparison Project (AMIP) simulations. In contrast, SST changes in the high latitudes are dominated by ocean and sea ice effects absent in AMIP simulations. The ocean interior simulation in CM3 is generally warmer than in CM2.1, which adversely impacts the interior biases.
Journal Article
Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models
by
Frölicher, Thomas L.
,
Dunne, John P.
,
Winton, Michael
in
Anthropogenic factors
,
Atmosphere
,
Biogeochemistry
2015
The authors assess the uptake, transport, and storage of oceanic anthropogenic carbon and heat over the period 1861–2005 in a new set of coupled carbon–climate Earth system models conducted for the fifth phase of the Coupled Model Intercomparison Project (CMIP5), with a particular focus on the Southern Ocean. Simulations show that the Southern Ocean south of 30°S, occupying 30% of global surface ocean area, accounts for 43% ± 3% (42 ± 5 Pg C) of anthropogenic CO₂ and 75% ± 22% (23 ± 9 × 1022J) of heat uptake by the ocean over the historical period. Northward transport out of the Southern Ocean is vigorous, reducing the storage to 33 ± 6 Pg anthropogenic carbon and 12 ± 7 × 1022J heat in the region. The CMIP5 models, as a class, tend to underestimate the observation-based global anthropogenic carbon storage but simulate trends in global ocean heat storage over the last 50 years within uncertainties of observation-based estimates. CMIP5 models suggest global and Southern Ocean CO₂ uptake have been largely unaffected by recent climate variability and change. Anthropogenic carbon and heat storage show a common broad-scale pattern of change, but ocean heat storage is more structured than ocean carbon storage. The results highlight the significance of the Southern Ocean for the global climate and as the region where models differ the most in representation of anthropogenic CO₂ and, in particular, heat uptake.
Journal Article
Oceanic mass transport by mesoscale eddies
2014
Oceanic transports of heat, salt, fresh water, dissolved CO2, and other tracers regulate global climate change and the distribution of natural marine resources. The time-mean ocean circulation transports fluid as a conveyor belt, but fluid parcels can also be trapped and transported discretely by migrating mesoscale eddies. By combining available satellite altimetry and Argo profiling float data, we showed that the eddy-induced zonal mass transport can reach a total meridionally integrated value of up to 30 to 40 sverdrups (Sv) (1 Sv = 106 cubic meters per second), and it occurs mainly in subtropical regions, where the background flows are weak. This transport is comparable in magnitude to that of the large-scale wind- and thermohaline-driven circulation.
Journal Article
An overview of scholarly literature on navigation hazards in Arctic shipping routes
by
Zhang, Daiyong
,
Chu, Xiumin
,
Mao, Wengang
in
Aquatic Pollution
,
Arctic region
,
Arctic Regions
2024
Maritime transport plays a crucial role in international trade. As the number and tonnage of ships continue to increase, traditional shipping routes are becoming progressively congested. The development of Arctic shipping routes has the potential to significantly improve trade efficiency and decrease reliance on traditional shipping routes. At the same time, the harsh navigation conditions in the Arctic pose a huge challenge to ships crossing the Arctic shipping routes. To address the above issues, this paper reviews the natural, navigational environment and unique navigational modes of ships in the Arctic shipping routes. Furthermore, the navigational risks caused by factors including low temperature, sea ice, poor visibility, communication, lack of infrastructure, lack of navigational experience, lack of historical data, high collision risk, and complex navigational environment are summarized and analyzed, providing a reference for researchers and policymakers to conduct research related to Arctic shipping routes.
Journal Article