Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
32,254
result(s) for
"Search algorithms"
Sort by:
A novel swarm intelligence optimization approach: sparrow search algorithm
2020
In this paper, a novel swarm optimization approach, namely sparrow search algorithm (SSA), is proposed inspired by the group wisdom, foraging and anti-predation behaviours of sparrows. Experiments on 19 benchmark functions are conducted to test the performance of the SSA and its performance is compared with other algorithms such as grey wolf optimizer (GWO), gravitational search algorithm (GSA), and particle swarm optimization (PSO). Simulation results show that the proposed SSA is superior over GWO, PSO and GSA in terms of accuracy, convergence speed, stability and robustness. Finally, the effectiveness of the proposed SSA is demonstrated in two practical engineering examples.
Journal Article
Feature selection via a novel chaotic crow search algorithm
by
Azar, Ahmad Taher
,
Hassanien, Aboul Ella
,
Sayed, Gehad Ismail
in
Artificial Intelligence
,
Computational Biology/Bioinformatics
,
Computational Science and Engineering
2019
Crow search algorithm (CSA) is a new natural inspired algorithm proposed by Askarzadeh in 2016. The main inspiration of CSA came from crow search mechanism for hiding their food. Like most of the optimization algorithms, CSA suffers from low convergence rate and entrapment in local optima. In this paper, a novel meta-heuristic optimizer, namely chaotic crow search algorithm (CCSA), is proposed to overcome these problems. The proposed CCSA is applied to optimize feature selection problem for 20 benchmark datasets. Ten chaotic maps are employed during the optimization process of CSA. The performance of CCSA is compared with other well-known and recent optimization algorithms. Experimental results reveal the capability of CCSA to find an optimal feature subset which maximizes the classification performance and minimizes the number of selected features. Moreover, the results show that CCSA is superior compared to CSA and the other algorithms. In addition, the experiments show that sine chaotic map is the appropriate map to significantly boost the performance of CSA.
Journal Article
Usability feature extraction using modified crow search algorithm: a novel approach
by
de Albuquerque Victor Hugo C
,
Rodrigues Joel J P C
,
Sundaram Shirsh
in
Algorithms
,
Feature extraction
,
Heuristic methods
2020
For the purpose of usability feature extraction and prediction, an innovative metaheuristic algorithm is introduced. Generally, the term “usability” is defined by the several researchers with respect to the hierarchical-based software usability model and it has become one of the important methods in terms of software quality. In hierarchically based software, its usability factors, attributes, and its characteristics are combined. The paper presented an algorithm, i.e., modified crow search algorithm (MCSA) mainly for extraction of usability features from hierarchical model with the optimal solution under the search for useful features. MCSA is an extension of original crow search algorithm (CSA), which is a naturally inspired algorithm. The mechanism of this algorithm is based on the process of hiding food and prevents theft and hence introduced this CSA in the field of software engineering practices as an inspiration. The algorithm generates a particular number of selected features/attributes and is applied on software development life cycles models, finding out the best among them. The results of the presented algorithm are compared with the standard binary bat algorithm (BBA), original CSA, and modified whale optimization algorithm (MWOA). The outcomes conclude that the proposed MCSA performs well than the standard BBA and original CSA as the proposed algorithms generate fewer number of feature selection equal to 17 than 18 in BBA, 23 in CSA, and 19 in MWOA.
Journal Article
Sine–cosine crow search algorithm: theory and applications
by
Khalilpourazari, Soheyl
,
Pasandideh, Seyed Hamid Reza
in
Algorithms
,
Artificial Intelligence
,
Computational Biology/Bioinformatics
2020
In this paper, we propose a new hybrid algorithm called sine–cosine crow search algorithm that inherits advantages of two recently developed algorithms, including crow search algorithm (CSA) and sine–cosine algorithm (SCA). The exploration and exploitation capabilities of the proposed algorithm have significantly improved. Performance of the so-called SCCSA was evaluated in unimodal, multimodal, fixed-dimensional multimodal and composite benchmark functions using robust measures. Based on in-depth analyses and statistical information, we showed that the suggested methodology could provide promising solutions comparing to other state-of-the-art algorithms.
Journal Article
Review and empirical analysis of sparrow search algorithm
2023
In recent years, swarm intelligence algorithms have received extensive attention and research. Swarm intelligence algorithms are a biological heuristic method, which is widely used in solving optimization problems. The traditional swarm intelligence algorithms provide new ideas and new ways to solve some practical problems, and they have made positive progress in fields such as combinatorial optimization, task scheduling, process control, engineering prediction, and image processing. In particular, the sparrow search algorithm is a new type of group intelligence optimization algorithm inspired by the group foraging behavior to perform local and global search by imitating the foraging and anti-predation behavior of sparrows. In view of the shortcomings of the original sparrow search algorithm, such as its easy fall into local optimum, slow convergence speed, and low convergence accuracy, scholars at home and abroad have improved the sparrow search algorithm and have made practical applications in various fields. Firstly, this paper introduces the basic principle of sparrow search algorithm, analyzes the factors affecting the performance of the algorithm, further proposes the improvement strategy of the algorithm, and performs function test comparison and performance analysis with particle swarm optimization algorithm, monarch butterfly algorithm, colony spider algorithm, and pigeon swarm optimization algorithm. After that, the application and development of the sparrow search algorithm in power grid load forecasting, image processing, path tracking, wireless sensor network routing performance optimization, wireless location, and fault diagnosis are described. Finally, combined with the performance characteristics and application direction of the sparrow search algorithm, the future research and development direction of the sparrow search algorithm is prospected.
Journal Article
Circle Search Algorithm: A Geometry-Based Metaheuristic Optimization Algorithm
by
Jurado, Francisco
,
Turky, Rania A.
,
Tostado-Véliz, Marcos
in
algorithms
,
Biology
,
circle search algorithm
2022
This paper presents a novel metaheuristic optimization algorithm inspired by the geometrical features of circles, called the circle search algorithm (CSA). The circle is the most well-known geometric object, with various features including diameter, center, perimeter, and tangent lines. The ratio between the radius and the tangent line segment is the orthogonal function of the angle opposite to the orthogonal radius. This angle plays an important role in the exploration and exploitation behavior of the CSA. To evaluate the robustness of the CSA in comparison to other algorithms, many independent experiments employing 23 famous functions and 3 real engineering problems were carried out. The statistical results revealed that the CSA succeeded in achieving the minimum fitness values for 21 out of the tested 23 functions, and the p-value was less than 0.05. The results evidence that the CSA converged to the minimum results faster than the comparative algorithms. Furthermore, high-dimensional functions were used to assess the CSA’s robustness, with statistical results revealing that the CSA is robust to high-dimensional problems. As a result, the proposed CSA is a promising algorithm that can be used to easily handle a wide range of optimization problems.
Journal Article
Hand gesture classification using a novel CNN-crow search algorithm
by
Gadekallu, Thippa Reddy
,
Bhattacharya, Sweta
,
M, Parimala
in
Accuracy
,
Artificial intelligence
,
Artificial neural networks
2021
Human–computer interaction (HCI) and related technologies focus on the implementation of interactive computational systems. The studies in HCI emphasize on system use, creation of new techniques that support user activities, access to information, and ensures seamless communication. The use of artificial intelligence and deep learning-based models has been extensive across various domains yielding state-of-the-art results. In the present study, a crow search-based convolution neural networks model has been implemented in gesture recognition pertaining to the HCI domain. The hand gesture dataset used in the study is a publicly available one, downloaded from Kaggle. In this work, a one-hot encoding technique is used to convert the categorical data values to binary form. This is followed by the implementation of a crow search algorithm (CSA) for selecting optimal hyper-parameters for training of dataset using the convolution neural networks. The irrelevant parameters are eliminated from consideration, which contributes towards enhancement of accuracy in classifying the hand gestures. The model generates 100 percent training and testing accuracy that justifies the superiority of the model against traditional state-of-the-art models.
Journal Article
A comprehensive survey of Crow Search Algorithm and its applications
2021
Crow Search Algorithm (CSA) is a recent swarm intelligence optimization algorithm inspired by the social intelligent behavior of crows for hiding food. It has been widely used to solve a large variety of optimization problems in several fields and areas of research and has proved its efficiency compared to several state-of-the-art optimization algorithms available in the literature. This paper presents a comprehensive overview of Crow Search Algorithm and its new variants categorized into modified and hybridized versions. It also describes the several applications of CSA in various domains such as feature selection, image processing, scheduling, economic dispatch, distributed generation, and other engineering problems. In addition, the paper suggests some interesting research areas related to CSA enhancement, CSA hybridization, and possible new applications.
Journal Article
A novel and innovative cancer classification framework through a consecutive utilization of hybrid feature selection
2023
Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer.
Journal Article
A comprehensive survey of convergence analysis of beetle antennae search algorithm and its applications
2024
In recent years, swarm intelligence optimization algorithms have been proven to have significant effects in solving combinatorial optimization problems. Introducing the concept of evolutionary computing, which is currently a hot research topic, into swarm intelligence optimization algorithms to form novel swarm intelligence optimization algorithms has proposed a new research direction for better solving combinatorial optimization problems. The longhorn beetle whisker search algorithm is an emerging heuristic algorithm, which originates from the simulation of longhorn beetle foraging behavior. This algorithm simulates the touch strategy required by longhorn beetles during foraging, and achieves efficient search in complex problem spaces through bioheuristic methods. This article reviews the research progress on the search algorithm for longhorn beetles from 2017 to present. Firstly, the basic principle and model structure of the beetle whisker search algorithm were introduced, and its differences and connections with other heuristic algorithms were analyzed. Secondly, this paper summarizes the research achievements of scholars in recent years on the improvement of longhorn whisker search algorithms. Then, the application of the beetle whisker search algorithm in various fields was explored, including function optimization, engineering design, and path planning. Finally, this paper summarizes the research achievements of scholars in recent years on the improvement of the longhorn whisker search algorithm, and proposes future research directions, including algorithm deep learning fusion, processing of multimodal problems, etc. Through this review, readers will have a comprehensive understanding of the research status and prospects of the longhorn whisker search algorithm, providing useful guidance for its application in practical problems.
Journal Article