Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
18,002 result(s) for "Seasonal temperatures"
Sort by:
Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan
Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960–2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17–0.37 °C/decade) compared to maximum temperature (0.17–0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (− 0.15 to − 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.
Physiological mechanisms of the impact of heat during pregnancy and the clinical implications: review of the evidence from an expert group meeting
Many populations experience high seasonal temperatures. Pregnant women are considered vulnerable to extreme heat because ambient heat exposure has been linked to pregnancy complications including preterm birth and low birthweight. The physiological mechanisms that underpin these associations are poorly understood. We reviewed the existing research evidence to clarify the mechanisms that lead to adverse pregnancy outcomes in order to inform public health actions. A multi-disciplinary expert group met to review the existing evidence base and formulate a consensus regarding the physiological mechanisms that mediate the effect of high ambient temperature on pregnancy. A literature search was conducted in advance of the meeting to identify existing hypotheses and develop a series of questions and themes for discussion. Numerous hypotheses have been generated based on animal models and limited observational studies. There is growing evidence that pregnant women are able to appropriately thermoregulate; however, when exposed to extreme heat, there are a number of processes that may occur which could harm the mother or fetus including a reduction in placental blood flow, dehydration, and an inflammatory response that may trigger preterm birth. There is a lack of substantial evidence regarding the processes that cause heat exposure to harm pregnant women. Research is urgently needed to identify what causes the adverse outcomes in pregnancy related to high ambient temperatures so that the impact of climate change on pregnant women can be mitigated.
Warming in Europe: Recent Trends in Annual and Seasonal temperatures
Contemporary climate warming is a key problem faced not only by scientists, but also all by humanity because, as is shown by the experience of recent years, it has multiple environmental, economic and biometeorological implications. In this paper, the authors identify the magnitude of annual and seasonal temperature changes in Europe and its immediate surroundings on the basis of data from 210 weather stations from 1951 to 2020. An analysis of temperatures in the 70-year period shows that air temperature has continued to grow linearly in Europe since 1985. The rate of temperature rise in three seasons of the year, namely winter, spring and summer, does not differ greatly. The highest growth over the 1985–2020 timespan was recorded in spring and the lowest in autumn—0.061 °C/year and 0.045 °C/year, respectively. In winter, the rise in temperature should be considered the least steady, as opposed to the summer when it displays the greatest stability. Overall, the warming intensifies towards the north-east of the continent. Such a strong gradient of change is especially perceivable in winter and spring, and is also marked in autumn. The opposite is true in summer, when it increases towards the south and south-west.
Seasonal Temperatures in West Antarctica During the Holocene
The recovery of long-term climate proxy records with seasonal resolution is rare because of natural smoothing processes, discontinuities, and limitations in measurement resolution. Yet insolation forcing, a primary driver of multi-millennial-scale climate change, acts through seasonal variations with direct impacts on seasonal climate. Whether the sensitivity of seasonal climate to insolation matches theoretical predictions has not been assessed over long timescales. Here, we analyze a continuous record of water-isotope ratios from the West Antarctic Ice Sheet (WAIS) Divide ice core to reveal summer and winter temperature changes through the last 11,000 years. Summer temperatures in West Antarctica increased through the early-to-mid Holocene, reached a peak at 4.1 ka, and then decreased to the present. Climate model simulations show that these variations primarily reflect changes in maximum summer insolation, confirming the general connection between seasonal insolation and warming, and demonstrating the importance of insolation intensity rather than seasonally integrated insolation or season duration. Winter temperatures varied less overall, consistent with predictions from insolation forcing, but also fluctuated in the early Holocene, likely owing to changes in meridional heat transport. The magnitudes of summer and winter temperature changes constrain the lowering of the WAIS surface since the early Holocene to less than 162 m, and most likely less than 58 m, consistent with geological constraints elsewhere in West Antarctica.
Are lizards sensitive to anomalous seasonal temperatures? Long-term thermobiological variability in a subtropical species
Alterations in thermal niches have been widely associated with the Anthropocene erosion of reptiles' diversity. They entail potential physiological constraints for organisms' performance, which can lead to activity restrictions and impact fitness and demography. Reptiles are ectotherms which rely on seasonal periodicity to maximize the performance of biological functions. Despite it, the ecological implications of shifts in local temperatures are barely explored at the seasonal scale. This study aims to assess how changes in air temperature and substrate temperature affect the activity, body temperature (Tb) and thermoregulation patterns of the sand lizard, Liolaemus arambarensis (an endangered, microendemic species from southern Brazil), throughout a four-year period. Field surveys were conducted monthly on a restricted population in a sand-dune habitat. The annual fluctuations of the seasonal temperatures led to significant changes in the activity and Tb of L. arambarensis and shaped thermoregulation trends, suggesting biological plasticity as a key factor in the face of such variability. Lizards tended to maintain seasonal Tb in mild and harsh seasons through increased warming/cooling efforts. Anomalous winter conditions seemed especially critical for individual performance due to their apparent high impact favouring/constraining activity. Activity and thermoregulation were inhibited in frigid winters, probably due to a vulnerable physiology to intense cold spells determined by higher preferred body temperatures than Tb. Our results warn of a complex sensitivity in lizards to anomalous seasonal temperatures, which are potentially enhanced by climate change. The current work highlights the importance of multiannual biomonitoring to disentangle long-term responses in the thermal biology of reptiles and, thereby, to integrate conservation needs in the scope of global change.
Climate change in Bangladesh: Temperature and rainfall climatology of Bangladesh for 1949–2013 and its implication on rice yield
Bangladesh has been ranked as one of the world’s top countries affected by climate change, particularly in terms of agricultural crop sector. The purpose of this study is to identify spatial and temporal changes and trends in long-term climate at local and national scales, as well as their implications for rice yield. In this study, Modified Mann-Kendall and Sen’s slope tests were used to detect significant trends and the magnitude of changes in temperature and rainfall. The temperature and rainfall data observed and recorded at 35 meteorological stations in Bangladesh over 65-years in the time span between the years 1949 and 2013 have been used to detect these changes and trends of variation. The results show that mean annual T mean , T min , and T max have increased significantly by 0.13°C, 0.13°C, and 0.13°C/decade, respectively. The most significant increasing trend in seasonal temperatures for the respective T mean , T min , and T max was 0.18°C per decade (post-monsoon), 0.18°C/decade (winter), and 0.23°C/decade (post-monsoon), respectively. Furthermore, the mean annual and pre-monsoon rainfall showed a significant increasing trend at a rate of 4.20 mm and 1.35 mm/year, respectively. This paper also evaluates climate variability impacts on three major rice crops, Aus, Aman, and Boro during 1970–2013. The results suggest that crop yield variability can be explained by climate variability during Aus , Aman , and Boro seasons by 33, 25, and 16%, respectively. Maximum temperature significantly affected the Aus and Aman crop yield, whereas rainfall significantly affected all rice crops’ yield. This study sheds light on sustainable agriculture in the context of climate change, which all relevant authorities should investigate in order to examine climate-resilient, high-yield crop cultivation.
The nature and the geography of elderly injuries in Sweden
This study assesses the nature and the geography of elderly injuries in Sweden. The most dominant types of accidents affecting the elderly in their homes and near environments are identified by using county-specific data from 2001 to 2010 followed by a correlation analysis of possible environmental factors underlying patterns of falls among the elderly. Geographical information systems are used to map rates by type. Slipping, tripping and stumbling are the causes of more than half of cases of elderly falls in Sweden, and is more typical in the Northern counties. Findings also show there has been a rise in rates of elderly falls since 2001 in most of the Southern counties, especially in Östergötland and Skåne Counties. Population age and gender affect the ecology of geography of fall rates and counties experiencing long cold winters tend to show higher rates of indoor falls than those with warmer temperature across the year. The article finalizes with a discussion of the results and implication for future research.
Present and future thermal regimes of intertidal groundwater springs in a threatened coastal ecosystem
In inland settings, groundwater discharge thermally modulates receiving surface water bodies and provides localized thermal refuges; however, the thermal influence of intertidal springs on coastal waters and their thermal sensitivity to climate change are not well studied. We addressed this knowledge gap with a field- and model-based study of a threatened coastal lagoon ecosystem in southeastern Canada. We paired analyses of drone-based thermal imagery with in situ thermal and hydrologic monitoring to estimate discharge to the lagoon from intertidal springs and groundwater-dominated streams in summer 2020. Results, which were generally supported by independent radon-based groundwater discharge estimates, revealed that combined summertime spring inflows (0.047 m3 s−1) were comparable to combined stream inflows (0.050 m3 s−1). Net advection values for the streams and springs were also comparable to each other but were 2 orders of magnitude less than the downwelling shortwave radiation across the lagoon. Although lagoon-scale thermal effects of groundwater inflows were small compared to atmospheric forcing, spring discharge dominated heat transfer at a local scale, creating pronounced cold-water plumes along the shoreline. A numerical model was used to interpret measured groundwater temperature data and investigate seasonal and multi-decadal groundwater temperature patterns. Modelled seasonal temperatures were used to relate measured spring temperatures to their respective aquifer source depths, while multi-decadal simulations forced by historic and projected climate data were used to assess long-term groundwater warming. Based on the 2020–2100 climate scenarios (for which 5-year-averaged air temperature increased up to 4.32∘), modelled 5-year-averaged subsurface temperatures increased 0.08–2.23∘ in shallow groundwater (4.2 m depth) and 0.32–1.42∘ in the deeper portion of the aquifer (13.9 m), indicating the depth dependency of warming. This study presents the first analysis of the thermal sensitivity of groundwater-dependent coastal ecosystems to climate change and indicates that coastal ecosystem management should consider potential impacts of groundwater warming.
An assessment of temperature simulations by CMIP6 climate models over the Tibetan Plateau and differences with CMIP5 climate models
Based on observational data from 1961 to 2014, the ability of 20 global climate models (GCMs) participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) to simulate surface air temperature climatology and variability over the Tibetan Plateau (TP) is evaluated. The possible difference between the simulations of CMIP6 models and temperature simulations by models participating in the fifth phase of the CMIP (CMIP5) over the TP is also examined. The results reveal that most GCMs have the ability to reproduce climatological patterns and seasonal spatial variations in the surface air temperature. However, most GCMs have a cold bias, with a mean underestimation of 0.05–8.28 °C, and the multimodel ensemble means (MME) and medians of 20 GCMs underestimate the climatological mean over the TP by approximately 2.51 °C and 2.22 °C for 1961–2014. Regarding annual temperature, the top five GCMs with the least amount of bias for both the spatial distribution and regional-averaged temperature are NESM3, UKESM1.0-LL, CESM2, HadGEM3-GC3.1-LL, and GISS-ES.1-G. The cold bias of GCMs over the eastern TP is smaller than that over the TP, and the cold bias is more serious over the western TP. The MME and multimodel median values of 20 GCMs are − 2.00 °C and − 1.94 °C over the eastern TP, respectively, while they are − 3.00 °C and − 2.35 °C over the western TP. Regarding seasonal temperature, outputs from CMIP6 GCMs also reveal a significant cold bias over the western TP that is particularly prominent in spring and winter. Compared with CIMP5 simulations, the CIMP6 models seem to show very limited improvement over the TP. Cold bias is more serious for annual, spring, summer, and winter simulations in CMIP6 than in CMIP5, especially over the western TP. Nevertheless, the simulations of the geographical distribution of annual and seasonal temperatures are further improved in CMIP6. Moreover, over the northeastern TP, such as Tsaidam Basin and Qilian Mountain, GCMs from CMIP6 show slight improvement.
Desiccation tolerant yet short-lived seeds: A conundrum for post-harvest handling of a high restoration value bunchgrass?
The successful preservation of seeds for future use depends on factors that maintain or limit seed viability. Yet, seed biology knowledge that would facilitate seed storage of most wild species used in ecosystem restoration is absent. This study characterized changes in seed water content, germination, desiccation tolerance, and relative storage longevity of Aristida beyrichiana (wiregrass), a focal restoration species, with respect to habitat of collection. We collected mature seeds from mesic and xeric habitats over two years then exposed these to desiccation stress sufficient for germplasm storage and aging stress (60% relative humidity, 45°C). We followed each method with germination assays at simulated seasonal temperatures. We analyzed germination responses along with production of normal and abnormal seedlings. We then modeled potential seed longevity and compared this against longevity of reference species. We found that wiregrass seeds display sufficient desiccation tolerance for ex situ storage and germinate preferentially under spring or fall and summer temperature conditions. The negligible to small effects of ecotype on these responses do not support the hypothesis that habitat of occurrence represents an adequate predictor of desiccation tolerance or germination response. However, seeds from both xeric and mesic habitats are estimated to be short-lived in storage. The contradiction between high desiccation tolerance yet short-lived nature of seeds implies that proper post-harvest seed handling, particularly regarding seed moisture management, is critical for maintaining seed viability. Further implications of this interesting seed physiology are discussed in the context of restoration.