Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,095 result(s) for "Seawater pH"
Sort by:
Prediction of seawater pH by bidirectional gated recurrent neural network with attention under phase space reconstruction: case study of the coastal waters of Beihai, China
Marine life is very sensitive to changes in pH. Even slight changes can cause ecosystems to collapse. Therefore, understanding the future pH of seawater is of great significance for the protection of the marine environment. At present, the monitoring method of seawater pH has been matured. However, how to accurately predict future changes has been lacking effective solutions. Based on this, the model of bidirectional gated recurrent neural network with multi-headed self-attention based on improved complete ensemble empirical mode decomposition with adaptive noise combined with phase space reconstruction (ICPBGA) is proposed to achieve seawater pH prediction. To verify the validity of this model, pH data of two monitoring sites in the coastal sea area of Beihai, China are selected to verify the effect. At the same time, the ICPBGA model is compared with other excellent models for predicting chaotic time series, and root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination ( R 2 ) are used as performance evaluation indicators. The R 2 of the ICPBGA model at Sites 1 and 2 are above 0.9, and the prediction errors are also the smallest. The results show that the ICPBGA model has a wide range of applicability and the most satisfactory prediction effect. The prediction method in this paper can be further expanded and used to predict other marine environmental indicators.
PyCO2SYS v1.8: marine carbonate system calculations in Python
Oceanic dissolved inorganic carbon (TC) is the largest pool of carbon that substantially interacts with the atmosphere on human timescales. Oceanic TC is increasing through uptake of anthropogenic carbon dioxide (CO2), and seawater pH is decreasing as a consequence. Both the exchange of CO2 between the ocean and atmosphere and the pH response are governed by a set of parameters that interact through chemical equilibria, collectively known as the marine carbonate system. To investigate these processes, at least two of the marine carbonate system's parameters are typically measured – most commonly, two from TC, total alkalinity (AT), pH, and seawater CO2 fugacity (fCO2; or its partial pressure, pCO2, or its dry-air mole fraction, xCO2) – from which the remaining parameters can be calculated and the equilibrium state of seawater solved. Several software tools exist to carry out these calculations, but no fully functional and rigorously validated tool written in Python, a popular scientific programming language, was previously available. Here, we present PyCO2SYS, a Python package intended to fill this capability gap. We describe the elements of PyCO2SYS that have been inherited from the existing CO2SYS family of software and explain subsequent adjustments and improvements. For example, PyCO2SYS uses automatic differentiation to solve the marine carbonate system and calculate chemical buffer factors, ensuring that the effect of every modelled solute and reaction is accurately included in all its results. We validate PyCO2SYS with internal consistency tests and comparisons against other software, showing that PyCO2SYS produces results that are either virtually identical or different for known reasons, with the differences negligible for all practical purposes. We discuss insights that guided the development of PyCO2SYS: for example, the fact that the marine carbonate system cannot be unambiguously solved from certain pairs of parameters. Finally, we consider potential future developments to PyCO2SYS and discuss the outlook for this and other software for solving the marine carbonate system. The code for PyCO2SYS is distributed via GitHub (https://github.com/mvdh7/PyCO2SYS, last access: 23 December 2021) under the GNU General Public License v3, archived on Zenodo , and documented online (https://pyco2sys.readthedocs.io/en/latest/, last access: 23 December 2021).
Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum
Boron and carbon isotope data, used in an Earth system model, show that the Palaeocene–Eocene Thermal Maximum was associated with a much greater release of carbon than thought, most probably triggered by volcanism in the North Atlantic. Volcanic carbon warmed the ancient climate The Palaeocene–Eocene Thermal Maximum was a surface warming event associated with ecological disruption that occurred about 56 million years ago. A large amount of carbon is thought to have been released during this event, but the total amount and the sources of carbon remain uncertain. This paper combines boron and carbon isotope data in an Earth system model and finds that the source of carbon was much larger than previously thought and that most of the carbon was probably released by volcanism associated with the North Atlantic Igneous Province. The study also suggests that the amplifying organic carbon–climate feedbacks did not have a prominent role in driving the event, but that enhanced burial of organic matter was important for sequestering the released carbon and accelerating the recovery of the climate system. The Palaeocene–Eocene Thermal Maximum 1 , 2 (PETM) was a global warming event that occurred about 56 million years ago, and is commonly thought to have been driven primarily by the destabilization of carbon from surface sedimentary reservoirs such as methane hydrates 3 . However, it remains controversial whether such reservoirs were indeed the source of the carbon that drove the warming 1 , 3 , 4 , 5 . Resolving this issue is key to understanding the proximal cause of the warming, and to quantifying the roles of triggers versus feedbacks. Here we present boron isotope data—a proxy for seawater pH—that show that the ocean surface pH was persistently low during the PETM. We combine our pH data with a paired carbon isotope record in an Earth system model in order to reconstruct the unfolding carbon-cycle dynamics during the event 6 , 7 . We find strong evidence for a much larger (more than 10,000 petagrams)—and, on average, isotopically heavier—carbon source than considered previously 8 , 9 . This leads us to identify volcanism associated with the North Atlantic Igneous Province 10 , 11 , rather than carbon from a surface reservoir, as the main driver of the PETM. This finding implies that climate-driven amplification of organic carbon feedbacks probably played only a minor part in driving the event. However, we find that enhanced burial of organic matter seems to have been important in eventually sequestering the released carbon and accelerating the recovery of the Earth system 12 .
Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations
The Permian/Triassic boundary approximately 251.9 million years ago marked the most severe environmental crisis identified in the geological record, which dictated the onwards course for the evolution of life. Magmatism from Siberian Traps is thought to have played an important role, but the causational trigger and its feedbacks are yet to be fully understood. Here we present a new boron-isotope-derived seawater pH record from fossil brachiopod shells deposited on the Tethys shelf that demonstrates a substantial decline in seawater pH coeval with the onset of the mass extinction in the latest Permian. Combined with carbon isotope data, our results are integrated in a geochemical model that resolves the carbon cycle dynamics as well as the ocean redox conditions and nitrogen isotope turnover. We find that the initial ocean acidification was intimately linked to a large pulse of carbon degassing from the Siberian sill intrusions. We unravel the consequences of the greenhouse effect on the marine environment, and show how elevated sea surface temperatures, export production and nutrient input driven by increased rates of chemical weathering gave rise to widespread deoxygenation and sporadic sulfide poisoning of the oceans in the earliest Triassic. Our findings enable us to assemble a consistent biogeochemical reconstruction of the mechanisms that resulted in the largest Phanerozoic mass extinction.The end-Permian mass extinction was linked with ocean acidification due to carbon degassing associated with Siberian Trap emplacement, according to boron isotopes from fossil shells and reconstruction of the carbon cycle.
Enhanced silica export in a future ocean triggers global diatom decline
Diatoms account for up to 40% of marine primary production 1 , 2 and require silicic acid to grow and build their opal shell 3 . On the physiological and ecological level, diatoms are thought to be resistant to, or even benefit from, ocean acidification 4 – 6 . Yet, global-scale responses and implications for biogeochemical cycles in the future ocean remain largely unknown. Here we conducted five in situ mesocosm experiments with natural plankton communities in different biomes and find that ocean acidification increases the elemental ratio of silicon (Si) to nitrogen (N) of sinking biogenic matter by 17 ± 6 per cent under p CO 2 conditions projected for the year 2100. This shift in Si:N seems to be caused by slower chemical dissolution of silica at decreasing seawater pH. We test this finding with global sediment trap data, which confirm a widespread influence of pH on Si:N in the oceanic water column. Earth system model simulations show that a future pH-driven decrease in silica dissolution of sinking material reduces the availability of silicic acid in the surface ocean, triggering a global decline of diatoms by 13–26 per cent due to ocean acidification by the year 2200. This outcome contrasts sharply with the conclusions of previous experimental studies, thereby illustrating how our current understanding of biological impacts of ocean change can be considerably altered at the global scale through unexpected feedback mechanisms in the Earth system. Mesocosm experiments in different biomes show that future ocean acidification will slow down the dissolution of biogenic silica, decreasing silicic acid availability in the surface ocean and triggering a global decline of diatoms as revealed by Earth system model simulations.
Observation of Decadal Natural Ocean Alkalinity Enhancement in the South China Sea
Ocean alkalinity enhancement (OAE) is a process of artificially increasing the alkalinity of seawater, chemically allowing the ocean to permanently absorb more carbon dioxide (CO2) from the atmosphere and reverse some of the chemical changes resulting from CO2‐induced acidification. However, the long‐term real impacts of OAE on ocean carbonate chemistry remain unexplored. This study examined a 26‐year time‐series study in the South China Sea as part of the Joint Global Ocean Flux Study, showing that the total alkalinity of the surface seawater increased annually by 0.56 μmol kg−1. Consequently, seawater increased its CO2 absorption by 28% and reversed the declines in seawater pH by 14% and calcium carbonate saturation state by 22%. The South China Sea provides a regional example of the consistency between the theory and field observations of OAE.
Mussel periostracum protects against shell dissolution
Reductions to seawater pH challenge the shell integrity of marine calcifiers. Many molluscs have an external organic layer (the periostracum) that limits exposure of underlying shell to the outside environment, which could potentially help combat shell dissolution under corrosive seawater conditions. We tested this hypothesis in adult California mussels, Mytilus californianus . We quantified shell dissolution rates as a function of periostracum cover across three levels of reduced pH (7.7, 7.5, and 7.4 on the total scale). Since periostracum can also be eroded over time, we additionally conducted a first-pass examination of whether differing surface textures induced by abrasional processes might influence dissolution rates. We contextualized this set of experiments with measurements of mussel periostracum cover in multiple intertidal habitats. Our results indicate a threefold reduction in shell dissolution rate as periostracum cover increases from 10 to 85% of shell surface area. Dissolution was higher in lower-pH treatments and in treatments where periostracum removal resulted in shells with rougher surface texture, potentially due to increased microtopographic surface area of underlying shell exposed to corrosive seawater. Periostracum loss in the field was greater for mussels at higher shoreline elevations and in sunnier locations, where heat, ultraviolet radiation, and desiccation at low tide may weaken attachment of the periostracum to the shell and. These findings highlight the potential for protective structures of marine organisms to help confront increasingly acute global environmental stressors.
Magnesium (Mg∕Ca, δ 26 Mg), boron (B∕Ca, δ 11 B), and calcium (Ca 2+ ) geochemistry of Arctica islandica and Crassostrea virginica extrapallial fluid and shell under ocean acidification
The geochemistry of biogenic carbonates has long been used as proxies to record changing seawater parameters. However, the effect of ocean acidification (OA) on seawater chemistry and organism physiology could impact isotopic signatures and how elements are incorporated into the shell. In this study, we investigated the geochemistry of three reservoirs important for biomineralization – seawater, the extrapallial fluid (EPF), and the shell – in two bivalve species: Crassostrea virginica and Arctica islandica. Additionally, we examined the effects of three ocean acidification conditions (ambient: 500 ppm CO2, moderate: 900 ppm CO2, and high: 2800 ppm CO2) on the geochemistry of the same three reservoirs for C. virginica. We present data on calcification rates, EPF pH, measured elemental ratios (Mg/Ca, B/Ca), and isotopic signatures (δ26Mg, δ11B). In both species, comparisons of seawater and EPF Mg/Ca and B/Ca, Ca2+, and δ26Mg indicate that the EPF has a distinct composition that differs from seawater. Shell δ11B did not faithfully record seawater pH, and δ11B-calculated pH values were consistently higher than pH measurements of the EPF with microelectrodes, indicating that the shell δ11B may reflect a localized environment within the entire EPF reservoir. In C. virginica, EPF Mg/Ca and B/Ca, as well as absolute concentrations of Mg2+, B, and Ca2+, were all significantly affected by ocean acidification, indicating that OA affects the physiological pathways regulating or storing these ions, an observation that complicates their use as proxies. Reduction in EPF Ca2+ may represent an additional mechanism underlying reduction in calcification in C. virginica in response to seawater acidification. The complexity of dynamics of EPF chemistry suggests boron proxies in these two mollusk species are not straightforwardly related to seawater pH, but ocean acidification does lead to both a decrease in microelectrode pH and boron-isotope-based pH, potentially showing applicability of boron isotopes in recording physiological changes. Collectively, our findings show that bivalves have high physiological control over the internal calcifying fluid, which presents a challenge in using boron isotopes for reconstructing seawater pH.
Live Tissue Imaging Shows Reef Corals Elevate pH under Their Calcifying Tissue Relative to Seawater
The threat posed to coral reefs by changes in seawater pH and carbonate chemistry (ocean acidification) raises the need for a better mechanistic understanding of physiological processes linked to coral calcification. Current models of coral calcification argue that corals elevate extracellular pH under their calcifying tissue relative to seawater to promote skeleton formation, but pH measurements taken from the calcifying tissue of living, intact corals have not been achieved to date. We performed live tissue imaging of the reef coral Stylophora pistillata to determine extracellular pH under the calcifying tissue and intracellular pH in calicoblastic cells. We worked with actively calcifying corals under flowing seawater and show that extracellular pH (pHe) under the calicoblastic epithelium is elevated by ∼0.5 and ∼0.2 pH units relative to the surrounding seawater in light and dark conditions respectively. By contrast, the intracellular pH (pHi) of the calicoblastic epithelium remains stable in the light and dark. Estimates of aragonite saturation states derived from our data indicate the elevation in subcalicoblastic pHe favour calcification and may thus be a critical step in the calcification process. However, the observed close association of the calicoblastic epithelium with the underlying crystals suggests that the calicoblastic cells influence the growth of the coral skeleton by other processes in addition to pHe modification. The procedure used in the current study provides a novel, tangible approach for future investigations into these processes and the impact of environmental change on the cellular mechanisms underpinning coral calcification.
The Bouraké semi-enclosed lagoon (New Caledonia) – a natural laboratory to study the lifelong adaptation of a coral reef ecosystem to extreme environmental conditions
According to current experimental evidence, coral reefs could disappear within the century if CO2 emissions remain unabated. However, recent discoveries of diverse and high cover reefs that already live under extreme conditions suggest that some corals might thrive well under hot, high-pCO2, and deoxygenated seawater. Volcanic CO2 vents, semi-enclosed lagoons, and mangrove estuaries are unique study sites where one or more ecologically relevant parameters for life in the oceans are close to or even worse than currently projected for the year 2100. Although they do not perfectly mimic future conditions, these natural laboratories offer unique opportunities to explore the mechanisms that reef species could use to keep pace with climate change. To achieve this, it is essential to characterize their environment as a whole and accurately consider all possible environmental factors that may differ from what is expected in the future, possibly altering the ecosystem response. This study focuses on the semi-enclosed lagoon of Bouraké (New Caledonia, southwest Pacific Ocean) where a healthy reef ecosystem thrives in warm, acidified, and deoxygenated water. We used a multi-scale approach to characterize the main physical-chemical parameters and mapped the benthic community composition (i.e., corals, sponges, and macroalgae). The data revealed that most physical and chemical parameters are regulated by the tide, strongly fluctuate three to four times a day, and are entirely predictable. The seawater pH and dissolved oxygen decrease during falling tide and reach extreme low values at low tide (7.2 pHT and 1.9 mg O2 L−1 at Bouraké vs. 7.9 pHT and 5.5 mg O2 L−1 at reference reefs). Dissolved oxygen, temperature, and pH fluctuate according to the tide by up to 4.91 mg O2 L−1, 6.50 ∘C, and 0.69 pHT units on a single day. Furthermore, the concentration of most of the chemical parameters was 1 to 5 times higher at the Bouraké lagoon, particularly for organic and inorganic carbon and nitrogen but also for some nutrients, notably silicates. Surprisingly, despite extreme environmental conditions and altered seawater chemical composition measured at Bouraké, our results reveal a diverse and high cover community of macroalgae, sponges, and corals accounting for 28, 11, and 66 species, respectively. Both environmental variability and nutrient imbalance might contribute to their survival under such extreme environmental conditions. We describe the natural dynamics of the Bouraké ecosystem and its relevance as a natural laboratory to investigate the benthic organism's adaptive responses to multiple extreme environmental conditions.