Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
49,081 result(s) for "Secretion."
Sort by:
The slime book
\"What kind of fish uses a slime sleeping bag? Which plants capture insects with slime? Find out the answers to these questions and more in this fascinating book about slime!\"-- Publisher's description.
Author Correction: Structure of the core of the type III secretion system export apparatus
In the version of this article initially published, the PDB code associated with the study was given as 6F2E but should have been 6F2D in Table 1 and the data availability statement. The error has been corrected in the HTML and PDF versions of the article.
My messy body
Explores the sometimes yucky functions of the body: why are vomit, pus, and snot sometimes good for us? And yes, pee and poo are also on the list.
Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages
Macrophages are dynamic cells that mature under the influence of signals from the local microenvironment into either classically (M1) or alternatively (M2) activated macrophages with specific functional and phenotypic properties. Although the phenotypic identification of M1 and M2 macrophages is well established in mice, this is less clear for human macrophages. In addition, the persistence and reversibility of polarized human phenotypes is not well established. Human peripheral blood monocytes were differentiated into uncommitted macrophages (M0) and then polarized to M1 and M2 phenotypes using LPS/IFN-γ and IL-4/IL-13, respectively. M1 and M2 were identified as CD64(+)CD80(+) and CD11b(+)CD209(+), respectively, by flow cytometry. Polarized M1 cells secreted IP-10, IFN-γ, IL-8, TNF-α, IL-1β, and RANTES, whereas M2 cells secreted IL-13, CCL17, and CCL18. Functionally, M2 cells were highly endocytic. In cytokine-deficient medium, the polarized macrophages reverted back to the M0 state within 12 days. If previously polarized macrophages were given the alternative polarizing stimulus after 6 days of resting in cytokine-deficient medium, a switch in polarization was seen (i.e., M1 macrophages switched to M2 and expressed CD11b(+)CD209(+) and vice versa). In summary, we report phenotypic identification of human M1 and M2 macrophages, their functional characteristics, and their ability to be reprogrammed given the appropriate stimuli.
Definition of the hypothalamic GnRH pulse generator in mice
The pulsatile release of luteinizing hormone (LH) is critical for mammalian fertility. However, despite several decades of investigation, the identity of the neuronal network generating pulsatile reproductive hormone secretion remains unproven. We use here a variety of optogenetic approaches in freely behaving mice to evaluate the role of the arcuate nucleus kisspeptin (ARNKISS) neurons in LH pulse generation. Using GCaMP6 fiber photometry, we find that the ARNKISS neuron population exhibits brief (∼1 min) synchronized episodes of calcium activity occurring as frequently as every 9 min in gonadectomized mice. These ARNKISS population events were found to be near-perfectly correlated with pulsatile LH secretion. The selective optogenetic activation of ARNKISS neurons for 1 min generated pulses of LH in freely behaving mice, whereas inhibition with archaerhodopsin for 30 min suppressed LH pulsatility. Experiments aimed at resetting the activity of the ARNKISS neuron population with halorhodopsin were found to reset ongoing LH pulsatility. These observations indicate the ARNKISS neurons as the long-elusive hypothalamic pulse generator driving fertility.
Toxic proteins released from mitochondria in cell death
A plethora of apoptotic stimuli converge on the mitochondria and affect their membrane integrity. As a consequence, multiple death-promoting factors residing in the mitochondrial intermembrane space are liberated in the cytosol. Pro- and antiapoptotic Bcl-2 family proteins control the release of these mitochondrial proteins by inducing or preventing permeabilization of the outer mitochondrial membrane. Once released into the cytosol, these mitochondrial proteins activate both caspase-dependent and -independent cell death pathways. Cytochrome c was the first protein shown to be released from the mitochondria into the cytosol, where it induces apoptosome formation. Other released mitochondrial proteins include apoptosis-inducing factor (AIF) and endonuclease G, both of which contribute to apoptotic nuclear DNA damage in a caspase-independent way. Other examples are Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding protein with low PI) and the serine protease HtrA2/OMI (high-temperature requirement protein A2), which both promote caspase activation and instigate caspase-independent cytotoxicity. The precise mode of action and importance of cytochrome c in apoptosis in mammalian cells has become clear through biochemical, structural and genetic studies. More recently identified factors, for example HtrA2/OMI and Smac/DIABLO, are still being studied intensively in order to delineate their functions in apoptosis. A better understanding of these functions may help to develop new strategies to treat cancer.
Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms
Mast cells degranulate and release the contents of intracellular secretory granules in response to the cross-linking of FcεRI by multivalent antigens. These granules contain a variety of biologically active inflammatory mediators; however, it is not clear whether these granules are homogenous or whether there is heterogeneity within the secretory granule population in mast cells. By using genetically altered mice lacking specific vesicle-associated SNARE membrane fusion proteins, we found that VAMP-8-deficient mast cells exhibited defects in FcεRI-regulated exocytosis, whereas synaptobrevin 2- or VAMP-3-deficient mast cells did not. Surprisingly, the defect in secretion in VAMP-8-deficient mice was limited to the subpopulation of mast cell secretory granules containing serotonin and cathepsin D, whereas regulated exocytosis of secretory granules containing histamine and TNF-α was normal. Confocal microscopy confirmed that serotonin and histamine were present in distinct intracellular granules and that most serotonin-containing granules were VAMP-8-positive. Thus, this study demonstrates that mast cells do indeed possess distinct subsets of secretory granules and that these subsets use different SNARE isoforms for exocytosis.
Visualization and characterization of individual type III protein secretion machines in live bacteria
Type III protein secretion machines have evolved to deliver bacterially encoded effector proteins into eukaryotic cells. Although electron microscopy has provided a detailed view of these machines in isolation or fixed samples, little is known about their organization in live bacteria. Here we report the visualization and characterization of the Salmonella type III secretion machine in live bacteria by 2D and 3D single-molecule switching superresolution microscopy. This approach provided access to transient components of this machine, which previously could not be analyzed. We determined the subcellular distribution of individual machines, the stoichiometry of the different components of this machine in situ, and the spatial distribution of the substrates of this machine before secretion. Furthermore, by visualizing this machine in Salmonella mutants we obtained major insights into the machine’s assembly. This study bridges a major resolution gap in the visualization of this nanomachine and may serve as a paradigm for the examination of other bacterially encoded molecular machines.
Type 9 secretion system structures reveal a new protein transport mechanism
The type 9 secretion system (T9SS) is the protein export pathway of bacteria of the Gram-negative Fibrobacteres-Chlorobi-Bacteroidetes superphylum and is an essential determinant of pathogenicity in severe periodontal disease. The central element of the T9SS is a so-far uncharacterized protein-conducting translocon located in the bacterial outer membrane. Here, using cryo-electron microscopy, we provide structural evidence that the translocon is the T9SS protein SprA. SprA forms an extremely large (36-strand) single polypeptide transmembrane β-barrel. The barrel pore is capped on the extracellular end, but has a lateral opening to the external membrane surface. Structures of SprA bound to different components of the T9SS show that partner proteins control access to the lateral opening and to the periplasmic end of the pore. Our results identify a protein transporter with a distinctive architecture that uses an alternating access mechanism in which the two ends of the protein-conducting channel are open at different times.