Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
198,611
result(s) for
"Sediment"
Sort by:
Assessment of Daily Streamflow, Sediment Fluxes, and Erosion Rate of a Pro-glacial Stream Basin, Central Himalaya, Uttarakhand
by
Rautela Kuldeep Singh
,
Bhoj, Ajay Singh
,
Kuniyal Jagdish Chandra
in
Ablation
,
Environmental monitoring
,
Erosion rates
2022
Reliable information of hydrological processes within a river basin is essentially required for developing an appropriate strategy for achieving sustainable development goals. The present study assesses the streamflow of a pro-glacial stream and also intends to estimate the contribution of suspended sediments, erosion rate, and the headwater contribution of the Panchachuli glacier. A field study during ablation period was carried out to measure streamflow and suspended sediment concentration (SSC). Further, HBV model was used to estimate the snowmelt. The average seasonal streamflow and SSC during the gauging period (July to October) for the basin were measured to be 7.17 m3/s, and 1.52 g/l in 2018, and 6.84 m3/s, and 1.21 g/l in 2019, respectively. Snowmelt contribution in total streamflow was 54.75% in 2018 which is reduced to 49.16% in 2019. Similarly, glacier melt contributes to 32.62% of its total runoff share in 2018 which was reduced to 28.73% in 2019. The rainfall runoff in total runoff increased to 12.62% from 2018 to 2019. Rainfall-runoff in its total runoff contribution showed an increased share of 22.13% in 2019. The streamflow, SSC, and suspended sediment load (SSL) showed a strong positive correlation for both the years. The suspended sediment yield (SSY), SSL, and erosion rate of the basin were found as high as compared to the other Himalayan basins in Himachal Pradesh, Jammu and Kashmir, and Ladakh and non-Himalayan regions that was found low when compared to other glaciers in Uttarakhand.
Journal Article
Evaluating tracer selection for catchment sediment fingerprinting
by
Smith, Hugh G
,
Lennard, Amy T
,
Daljit Singh Karam
in
Accuracy
,
Agricultural watersheds
,
Apportionment
2018
PurposeRecent sediment fingerprinting research has shown the sensitivity of source apportionment results to data treatments, tracer number, and mixing model type. In light of these developments, there is a need to revisit procedures associated with tracer selection in sediment fingerprinting studies. Here, we evaluate the accuracy and precision of different procedures to select tracers for un-mixing sediment sources.Materials and methodsWe present a new approach to tracer selection based on identifying and removing tracers that exhibit non-conservative behaviour during sediment transport. This removes tracers on the basis of non-conservative behaviour identified using (1) tracer-particle size relationships and (2) source mixing polygons. We test source apportionment results using six sets of tracers with three different synthetic mixtures comprising one, five, and ten mixture samples. Source tracer data was obtained from an agricultural catchment in northwest England where time-integrated suspended sediment samples were also collected over a 12-month period. Source un-mixing used MixSIAR, a Bayesian mixing model developed for ecological food web studies, which is increasingly being applied in catchment sediment fingerprinting research.Results and discussionWe found that the most accurate source apportionment results were achieved by the selection procedure that only removed tracers on the basis of non-conservative behaviour. Furthermore, accuracy and precision were improved with five or ten mixture samples compared to the use of a single mixture sample. Combining this approach with a further step to exclude additional tracers based on source group non-normality reduced accuracy, which supports relaxation of the assumption of source normality in MixSIAR. Source apportionment based on the widely used Kruskal-Wallis H test and discriminant function analysis approach was less accurate and had larger uncertainty that the procedure focused on excluding non-conservative tracers.ConclusionsSource apportionment results are sensitive to tracer selection. Our findings show that prioritising tracer exclusion due to non-conservative behaviour produces more accurate results than selection based on the minimum number of tracers that maximise source discrimination. Future sediment fingerprinting studies should aim to maximise the number of tracers used in source un-mixing constrained only by the need to ensure conservative behaviour. Our procedure provides a quantitative approach for identifying and excluding those non-conservative tracers.
Journal Article
Estuarine and coastal hydrography and sediment transport
\"A practical guide to the latest remote and in situ techniques used to measure sediments, quantify seabed characteristics, and understand physical properties of water and sediments and transport mechanisms in estuaries and coastal waters. Covering a broad range of topics from global reference frames and bathymetric surveying methods to the use of remote sensing for determining surface-water variables, enough background is included to explain how each technology functions. The advantages and disadvantages of each technology are explained, and a review of recent fieldwork experiments demonstrates how modern methods apply in real-life estuarine and coastal campaigns. Clear explanations of physical processes show links between different disciplines, making the book ideal for students and researchers in the environmental sciences, marine biology, chemistry and geology, whose work relies on an understanding of the physical environment and the way it is changing as a result of climate change, engineering and other influences\"-- Provided by publisher.
Watershed Suspended Sediment Supply and Potential Impacts of Dam Removals for an Estuary
by
Woodruff, Jonathan D.
,
Yellen, Brian
,
Ralston, David K.
in
Coastal Sciences
,
Dam effects
,
Dams
2021
Observations and modeling are used to assess potential impacts of sediment releases due to dam removals on the Hudson River estuary. Watershed sediment loads are calculated based on sediment-discharge rating curves for gauges covering 80% of the watershed area. The annual average sediment load to the estuary is 1.2 Mt, of which about 0.6 Mt comes from side tributaries. Sediment yield varies inversely with watershed area, with regional trends that are consistent with substrate erodibility. Geophysical and sedimentological surveys in seven subwatersheds of the Lower Hudson were conducted to estimate the mass and composition of sediment trapped behind dams. Impoundments were classified as (1) active sediment traps, (2) run-of-river sites not actively trapping sediment, and (3) dammed natural lakes and spring-fed ponds. Based on this categorization and impoundment attributes from a dam inventory database, the total mass of impounded sediment in the Lower Hudson watershed is estimated as 4.9 ± 1.9 Mt. This represents about 4 years of annual watershed supply, which is small compared with some individual dam removals and is not practically available given current dam removal rates. More than half of dams impound drainage areas less than 1 km², and play little role in downstream sediment supply. In modeling of a simulated dam removal, suspended sediment in the estuary increases modestly near the source during discharge events, but otherwise effects on suspended sediment are minimal. Fine-grained sediment deposits broadly along the estuary and coarser sediment deposits near the source, with transport distance inversely related to settling velocity.
Journal Article
Global-scale human impact on delta morphology has led to net land area gain
2020
River deltas rank among the most economically and ecologically valuable environments on Earth. Even in the absence of sea-level rise, deltas are increasingly vulnerable to coastal hazards as declining sediment supply and climate change alter their sediment budget, affecting delta morphology and possibly leading to erosion
1
–
3
. However, the relationship between deltaic sediment budgets, oceanographic forces of waves and tides, and delta morphology has remained poorly quantified. Here we show how the morphology of about 11,000 coastal deltas worldwide, ranging from small bayhead deltas to mega-deltas, has been affected by river damming and deforestation. We introduce a model that shows that present-day delta morphology varies across a continuum between wave (about 80 per cent), tide (around 10 per cent) and river (about 10 per cent) dominance, but that most large deltas are tide- and river-dominated. Over the past 30 years, despite sea-level rise, deltas globally have experienced a net land gain of 54 ± 12 square kilometres per year (2 standard deviations), with the largest 1 per cent of deltas being responsible for 30 per cent of all net land area gains. Humans are a considerable driver of these net land gains—25 per cent of delta growth can be attributed to deforestation-induced increases in fluvial sediment supply. Yet for nearly 1,000 deltas, river damming
4
has resulted in a severe (more than 50 per cent) reduction in anthropogenic sediment flux, forcing a collective loss of 12 ± 3.5 square kilometres per year (2 standard deviations) of deltaic land. Not all deltas lose land in response to river damming: deltas transitioning towards tide dominance are currently gaining land, probably through channel infilling. With expected accelerated sea-level rise
5
, however, recent land gains are unlikely to be sustained throughout the twenty-first century. Understanding the redistribution of sediments by waves and tides will be critical for successfully predicting human-driven change to deltas, both locally and globally.
A global study of river deltas shows a net increase in delta area by about 54 km
2
yr
−1
over the past 30 years, in part due to deforestation-induced sediment delivery increase.
Journal Article
Sedimentary crisis at the global scale
by
Bravard, Jean-Paul, author
in
Sedimentation and deposition.
,
Sediment transport.
,
Rivers Environmental conditions.
2019
Volume 1: \"The Earth's oceans are currently undergoing unprecedented changes: rivers have suffered a severe reduction in their sediment transport, and as a result, sediment input to the oceans has dropped lower than ever before. These inputs have varied over millennia as a result of both natural occurrences and human actions, such as the building of dams and the extraction of materials from riverbeds. Sedimentary Crisis at the Global Scale 1 examines how river basins have been affected by the sedimentary crises of various historical epochs. By studying global balances, it provides insights into the profound disruption of the solid transport of fluvial bodies. The book also explores studies of various rivers, from the Amazon, which remains relatively unaffected, to dying rivers such as the Colorado and the Nile.\" -- Back cover.
Equilibrium sediment exchange in the earth’s critical zone: evidence from sediment fingerprinting with stable isotopes and watershed modeling
by
Nabil Al Aamery
,
James Forrest Fox
,
d, William
in
Algae
,
Carbon isotopes
,
Computer simulation
2019
PurposeThe equilibrium sediment exchange process is defined as instantaneous deposition of suspended sediment to the streambed countered by equal erosion of sediment from the streambed. Equilibrium exchange has rarely been included in sediment transport studies but is needed when the sediment continuum is used to investigate the earth’s critical zone.Materials and methodsNumerical modeling in the watershed uplands and stream corridor simulates sediment yield and sediment source partitioning for the Upper South Elkhorn watershed in Kentucky, USA. We simulate equilibrium exchange when upland-derived sediment simultaneously deposits to the streambed while streambed sediments erode. Sediment fingerprinting with stable carbon isotopes allowed constraint of the process in a gently rolling watershed.Results and discussionCarbon isotopes work well to partition upland sediment versus streambed sediment because sediment deposited in the streambed accrues a unique autotrophic, i.e., algal, fingerprint. Stable nitrogen isotopes do not work well to partition the sources in this study because the nitrogen isotope fingerprint of algae falls in the middle of the nitrogen isotope fingerprint of upland sediment. The source of sediment depends on flow intensity for the gently rolling watershed. Streambed sediments dominate the fluvial load for low and moderate events, while upland sediments become increasingly important during high flows and extreme events. We used sediment fingerprinting results to calibrate the equilibrium sediment exchange rate in the watershed sediment transport model.ConclusionsOur sediment fingerprinting and modeling evidence suggest equilibrium sediment exchange is a substantial process occurring in the system studied. The process does not change the sediment load or streambed sediment storage but does impact the quality of sediment residing in the streambed. Therefore, we suggest equilibrium sediment exchange should be considered when the sediment continuum is used to investigate the critical zone. We conclude the paper by outlining future research priorities for coupling sediment fingerprinting with watershed modeling.
Journal Article