Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
86 result(s) for "Sedum - genetics"
Sort by:
Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola
Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils.
Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation
Summary The hyperaccumulating ecotype of Sedum alfredii Hance is a cadmium (Cd)/zinc/lead co‐hyperaccumulating species of Crassulaceae. It is a promising phytoremediation candidate accumulating substantial heavy metal ions without obvious signs of poisoning. However, few studies have focused on the regulatory roles of miRNAs and their targets in the hyperaccumulating ecotype of S. alfredii. Here, we combined analyses of the transcriptomics, sRNAs and the degradome to generate a comprehensive resource focused on identifying key regulatory miRNA‐target circuits under Cd stress. A total of 87 721 unigenes and 356 miRNAs were identified by deep sequencing, and 79 miRNAs were differentially expressed under Cd stress. Furthermore, 754 target genes of 194 miRNAs were validated by degradome sequencing. A gene ontology (GO) enrichment analysis of differential miRNA targets revealed that auxin, redox‐related secondary metabolism and metal transport pathways responded to Cd stress. An integrated analysis uncovered 39 pairs of miRNA targets that displayed negatively correlated expression profiles. Ten miRNA‐target pairs also exhibited negative correlations according to a real‐time quantitative PCR analysis. Moreover, a coexpression regulatory network was constructed based on profiles of differentially expressed genes. Two hub genes, ARF4 (auxin response factor 4) and AAP3 (amino acid permease 3), which might play central roles in the regulation of Cd‐responsive genes, were uncovered. These results suggest that comprehensive analyses of the transcriptomics, sRNAs and the degradome provided a useful platform for investigating Cd hyperaccumulation in S. alfredii, and may provide new insights into the genetic engineering of phytoremediation.
Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album
Plants with facultative crassulacean acid metabolism (CAM) maximize performance through utilizing C3 or C4 photosynthesis under ideal conditions while temporally switching to CAM under water stress (drought). While genome-scale analyses of constitutive CAM plants suggest that time of day networks are shifted, or phased to the evening compared to C3, little is known for how the shift from C3 to CAM networks is modulated in drought induced CAM. Here we generate a draft genome for the drought-induced CAM-cycling species Sedum album. Through parallel sampling in well-watered (C3) and drought (CAM) conditions, we uncover a massive rewiring of time of day expression and a CAM and stress-specific network. The core circadian genes are expanded in S. album and under CAM induction, core clock genes either change phase or amplitude. While the core clock cis-elements are conserved in S. album, we uncover a set of novel CAM and stress specific cis-elements consistent with our finding of rewired co-expression networks. We identified shared elements between constitutive CAM and CAM-cycling species and expression patterns unique to CAM-cycling S. album. Together these results demonstrate that drought induced CAM-cycling photosynthesis evolved through the mobilization of a stress-specific, time of day network, and not solely the phasing of existing C3 networks. These results will inform efforts to engineer water use efficiency into crop plants for growth on marginal land.
The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii
Although the significance of apoplasmic barriers in roots with regards to the uptake of toxic elements is generally known, the contribution of apoplasmic bypasses (ABs) to cadmium (Cd) hyperaccumulation is little understood. Here, we employed a combination of stable isotopic tracer techniques, an ABs tracer, hydraulic measurements, suberin lamellae staining, metabolic inhibitors, and antitranspirants to investigate and quantify the impact of the ABs on translocation of Cd to the xylem in roots of a hyperaccumulating (H) ecotype and a non-hyperaccumulating (NH) ecotype of Sedum alfredii. In the H ecotype, the Cd content in the xylem sap was proportional to hydrostatic pressure, which was attributed to pressure-driven flow via the ABs. The contribution of the ABs to Cd transportation to the xylem was dependent on the Cd concentration applied to the H ecotype (up to 37% at the highest concentration used). Cd-treated H ecotype roots showed significantly higher hydraulic conductance compared with the NH ecotype (76 vs 52 × 10−8 m s−1MPa−1), which is in accordance with less extensive suberization due to reduced expression of suberin-related genes. The main entry sites of apoplasmically transported Cd were localized in the root apexes and lateral roots of the H ecotype, where suberin lamellae were not well developed. These findings highlight the significance of the apoplasmic bypass in Cd hyperaccumulation in hyperaccumulating ecotypes of S. alfredii.
Transcriptomic Analysis of Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum alfredii Hance
The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE) shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE) shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≥ 2.0) and down-regulated (Fold Change
Complete Chloroplast Genome of Sedum sarmentosum and Chloroplast Genome Evolution in Saxifragales
Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated) chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC) region, 16.670 bp of a small single-copy (SSC) region, and a pair of 25,783 bp sequences of inverted repeats (IRs).The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.
Sedum alfredii SaNramp6 Metal Transporter Contributes to Cadmium Accumulation in Transgenic Arabidopsis thaliana
The plant natural resistance-associated macrophage protein (Nramp) family plays an important role in tolerance to heavy metal stress. However, few Nramps have been functionally characterized in the heavy metal-accumulating plant Sedum alfredii . Here, Nramp 6 was cloned and identified from S. alfredii and its function analyzed in transgenic Arabidopsis thaliana . SaNramp6 cDNA contains an open reading frame of 1, 638 bp encoding 545 amino acids. SaNramp6 ′s expression can be induced by cadmium (Cd) stress, and, after treatment, it peaked at one week and 12 h in the roots and leaves, respectively. SaNramp6 localized to the plasma membrane in protoplasts isolated from A. thaliana , Nicotiana benthamiana lower leaf and onion ( Allium cepa ) epidermal cells. The heterologous expression of SaNramp6 in the Δycf1 yeast mutant increased the Cd content in yeast cells. SaNramp6 also rescued the low Cd accumulation of the A. thaliana nramp1 mutant. Transgenic A. thaliana expressing SaNramp6 exhibited high Cd accumulation levels, as determined by a statistical analysis of the Cd concentration, translocation factors and net Cd 2+ fluxes under Cd stress. Thus, SaNramp6 may play a significant role in improving Cd accumulation, and the gene may be useful for the biotechnological development of transgenic plants for phytoremediation.
Identification and functional characterization of ABCC transporters for Cd tolerance and accumulation in Sedum alfredii Hance
Cd is one of the potential toxic elements (PTEs) exerting great threats on the environment and living organisms and arising extensive attentions worldwide. Sedum alfredii Hance, a Cd hyperaccumulator, is of great importance in studying the mechanisms of Cd hyperaccumulation and has potentials for phytoremediation. ATP-binding cassette sub-family C (ABCC) belongs to the ABC transporter family, which is deemed to closely associate with multiple physiological processes including cellular homeostasis, metal detoxification, and transport of metabolites. In the present work, ten ABCC proteins were identified in S. alfredii Hance, exhibiting uniform domain structure and divergently clustering with those from Arabidopsis . Tissue-specific expression analysis indicated that some SaABCC genes had significantly higher expression in roots ( Sa23221 and Sa88F144 ), stems ( Sa13F200 and Sa14F98 ) and leaves ( Sa13F200 ). Co-expression network analysis using these five SaABCC genes as hub genes produced two clades harboring different edge genes. Transcriptional expression profiles responsive to Cd illustrated a dramatic elevation of Sa14F190 and Sa18F186 genes. Heterologous expression in a Cd-sensitive yeast cell line, we confirmed the functions of Sa14F190 gene encoding ABCC in Cd accumulation. Our study performed a comprehensive analysis of ABCCs in S. alfredii Hance, firstly mapped their tissue-specific expression patterns responsive to Cd stress, and characterized the roles of Sa14F190 genes in Cd accumulation.
Identification, Expression Analysis of the Hsf Family, and Characterization of Class A4 in Sedum Alfredii Hance under Cadmium Stress
Sedum alfredii Hance, a cadmium (Cd)/zinc (Zn)/lead (Pb) co-hyperaccumulating species, is a promising phytoremediation candidate because it accumulates substantial amounts of heavy metal ions without showing any obvious signs of poisoning. The heat shock transcription factor (Hsf) family plays crucial roles in plant growth, development, and stress responses. Although the roles of some Hsfs in abiotic stress have been well studied in model plants, the Hsf family has not been systematically investigated in heavy metal hyperaccumulators. Here, we comprehensively analyzed the Hsf gene family in S. alfredii based on a transcriptome under Cd stress. There were 22 Hsf members that were identified and phylogenetically clustered into three classes, namely, SaHsfA, SaHsfB, and SaHsfC. All of the three classes shared similar motifs. The expression profiles of the 22 Hsf members showed significant differences: 18 SaHsfs were responsive to Cd stress, as were multiple SaHsp genes, including SaHsp18.1, SaHsp22, SaHsp26.5, SaHsp70, SaHsp90, and SaHsp101. Two class A4 members, SaHsfA4a and SaHsfA4c, exhibited transcriptional activation activities. Overexpression of SaHsfA4a and SaHsfA4c in transgenic yeast indicated an improved tolerance to Cd stress and Cd accumulation. Our results suggest SaHsfs play important regulatory roles in heavy metal stress responses, and provide a reference for further studies on the mechanism of heavy metal stress regulation by SaHsfs.
Site-specific regulation of transcriptional responses to cadmium stress in the hyperaccumulator, Sedum alfredii: based on stem parenchymal and vascular cells
Key messageWe compared the transcriptomes of parenchymal and vascular cells of Sedum alfredii stem under Cd stress to reveal gene regulatory networks underlying Cd hyperaccumulation.Cadmium (Cd) hyperaccumulation in plants is a complex biological process controlled by gene regulatory networks. Efficient transport through vascular systems and storage by parenchymal cells are vital for Cd hyperaccumulation in the Cd hyperaccumulator Sedum alfredii, but the genes involved are poorly understood. We investigated the spatial gene expression profiles of transport and storage sites in S. alfredii stem using laser-capture microdissection coupled with RNA sequencing. Gene expression patterns in response to Cd were distinct in vascular and parenchymal cells, indicating functional divisions that corresponded to Cd transportation and storage, respectively. In vascular cells, plasma membrane-related terms enriched a large number of differentially-expressed genes (DEGs) for foundational roles in Cd transportation. Parenchymal cells contained considerable DEGs specifically concentrated on vacuole-related terms associated with Cd sequestration and detoxification. In both cell types, DEGs were classified into different metabolic pathways in a similar way, indicating the role of Cd in activating a systemic stress signalling network where ATP-binding cassette transporters and Ca2+ signal pathways were probably involved. This study identified site-specific regulation of transcriptional responses to Cd stress in S. alfredii and analysed a collection of genes that possibly function in Cd transportation and detoxification, thus providing systemic information and direction for further investigation of Cd hyperaccumulation molecular mechanisms.