Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
28 result(s) for "Self-normalization"
Sort by:
A self-normalized approach to confidence interval construction in time series
We propose a new method to construct confidence intervals for quantities that are associated with a stationary time series, which avoids direct estimation of the asymptotic variances. Unlike the existing tuning-parameter-dependent approaches, our method has the attractive convenience of being free of any user-chosen number or smoothing parameter. The interval is constructed on the basis of an asymptotically distribution-free self-normalized statistic, in which the normalizing matrix is computed by using recursive estimates. Under mild conditions, we establish the theoretical validity of our method for a broad class of statistics that are functionals of the empirical distribution of fixed or growing dimension. From a practical point of view, our method is conceptually simple, easy to implement and can be readily used by the practitioner. Monte Carlo simulations are conducted to compare the finite sample performance of the new method with those delivered by the normal approximation and the block bootstrap approach.
TWO-SAMPLE TESTS FOR RELEVANT DIFFERENCES IN THE EIGENFUNCTIONS OF COVARIANCE OPERATORS
This study examines two-sample tests for functional time series data, which have become widely available with the advent of modern complex observation systems. Here, we evaluate whether two sets of functional time series observations share the shape of their primary modes of variation, as encoded by the eigenfunctions of the respective covariance operators. To this end, a novel testing approach is introduced that adds to existing literature in two main ways. First, tests are set up in the relevant testing framework, where interest is not in testing an exact null hypothesis, but rather in detecting deviations deemed sufficiently relevant, with relevance determined by the practitioner and perhaps guided by domain experts. Second, the proposed test statistics rely on a self-normalization principle that helps to avoid the notoriously difficult task of estimating the long-run covariance structure of the underlying functional time series. The main theoretical result of this study is the derivation of the large-sample behavior of the proposed test statistics. Empirical evidence, which indicates that the proposed procedures work well in finite samples and compare favorably with competing methods, is provided through a simulation study and an application to annual temperature data.
Unsupervised Self-Normalized Change-Point Testing for Time Series
We propose a new self-normalized method for testing change points in the time series setting. Self-normalization has been celebrated for its ability to avoid direct estimation of the nuisance asymptotic variance and its flexibility of being generalized to handle quantities other than the mean. However, it was developed and mainly studied for constructing confidence intervals for quantities associated with a stationary time series, and its adaptation to change-point testing can be nontrivial as direct implementation can lead to tests with nonmonotonic power. Compared with existing results on using self-normalization in this direction, the current article proposes a new self-normalized change-point test that does not require prespecifying the number of total change points and is thus unsupervised. In addition, we propose a new contrast-based approach in generalizing self-normalized statistics to handle quantities other than the mean, which is specifically tailored for change-point testing. Monte Carlo simulations are presented to illustrate the finite-sample performance of the proposed method. Supplementary materials for this article are available online.
Inference for linear models with dependent errors
The paper is concerned with inference for linear models with fixed regressors and weakly dependent stationary time series errors. Theoretically, we obtain asymptotic normality for the M-estimator of the regression parameter under mild conditions and establish a uniform Bahadur representation for recursive M-estimators. Methodologically, we extend the recently proposed self-normalized approach of Shao from stationary time series to the regression set-up, where the sequence of response variables is typically non-stationary in mean. Since the limiting distribution of the self-normalized statistic depends on the design matrix and its corresponding critical values are case dependent, we develop a simulation-based approach to approximate the critical values consistently. Through a simulation study, we demonstrate favourable finite sample performance of our method in comparison with a block-bootstrap-based approach. Empirical illustrations using two real data sets are also provided.
Self-Normalized Moderate Deviations for Degenerate U-Statistics
In this paper, we study self-normalized moderate deviations for degenerate U-statistics of order 2. Let Xi,i≥1 be i.i.d. random variables and consider symmetric and degenerate kernel functions in the form h(x,y)=∑l=1∞λlgl(x)gl(y), where λl>0, Egl(X1)=0, and gl(X1) is in the domain of attraction of a normal law for all l≥1. Under the condition ∑l=1∞λl<∞ and some truncated conditions for gl(X1):l≥1, we show that logP(∑1≤i≠j≤nh(Xi,Xj)max1≤l<∞λlVn,l2≥xn2)∼−xn22 for xn→∞ and xn=o(n), where Vn,l2=∑i=1ngl2(Xi). As application, a law of the iterated logarithm is also obtained.
HYPOTHESIS TESTING FOR HIGH-DIMENSIONAL TIME SERIES VIA SELF-NORMALIZATION
Self-normalization has attracted considerable attention in the recent literature of time series analysis, but its scope of applicability has been limited to low-/fixed-dimensional parameters for low-dimensional time series. In this article, we propose a new formulation of self-normalization for inference about the mean of high-dimensional stationary processes. Our original test statistic is a U-statistic with a trimming parameter to remove the bias caused by weak dependence. Under the framework of nonlinear causal processes, we show the asymptotic normality of our U-statistic with the convergence rate dependent upon the order of the Frobenius norm of the long-run covariance matrix. The self-normalized test statistic is then constructed on the basis of recursive subsampled U-statistics and its limiting null distribution is shown to be a functional of time-changed Brownian motion, which differs from the pivotal limit used in the low-dimensional setting. An interesting phenomenon associated with self-normalization is that it works in the high-dimensional context even if the convergence rate of original test statistic is unknown. We also present applications to testing for bandedness of the covariance matrix and testing for white noise for high-dimensional stationary time series and compare the finite sample performance with existing methods in simulation studies. At the root of our theoretical arguments, we extend the martingale approximation to the high-dimensional setting, which could be of independent theoretical interest.
Two sample inference for the second-order property of temporally dependent functional data
Motivated by the need to statistically quantify the difference between two spatio-temporal datasets that arise in climate downscaling studies, we propose new tests to detect the differences of the covariance operators and their associated characteristics of two functional time series. Our two sample tests are constructed on the basis of functional principal component analysis and self-normalization, the latter of which is a new studentization technique recently developed for the inference of a univariate time series. Compared to the existing tests, our SN-based tests allow for weak dependence within each sample and it is robust to the dependence between the two samples in the case of equal sample sizes. Asymptotic properties of the SNbased test statistics are derived under both the null and local alternatives. Through extensive simulations, our SN-based tests are shown to outperform existing alternatives in size and their powers are found to be respectable. The tests are then applied to the gridded climate model outputs and interpolated observations to detect the difference in their spatial dynamics.
Diagnostic Checking in Multivariate ARMA Models With Dependent Errors Using Normalized Residual Autocorrelations
In this paper, we derive the asymptotic distribution of normalized residual empirical autocovariances and autocorrelations under weak assumptions on the noise. We propose new portmanteau statistics for vector autoregressive moving average models with uncorrelated but nonindependent innovations by using a self-normalization approach. We establish the asymptotic distribution of the proposed statistics. This asymptotic distribution is quite different from the usual chi-squared approximation used under the independent and identically distributed assumption on the noise, or the weighted sum of independent chi-squared random variables obtained under nonindependent innovations. A set of Monte Carlo experiments and an application to the daily returns of the CAC40 is presented. Supplementary materials for this article are available online.
Confidence Intervals for Conditional Tail Risk Measures in ARMA-GARCH Models
ARMA-GARCH models are widely used to model the conditional mean and conditional variance dynamics of returns on risky assets. Empirical results suggest heavy-tailed innovations with positive extreme value index for these models. Hence, one may use extreme value theory to estimate extreme quantiles of residuals. Using weak convergence of the weighted sequential tail empirical process of the residuals, we derive the limiting distribution of extreme conditional Value-at-Risk (CVaR) and conditional expected shortfall (CES) estimates for a wide range of extreme value index estimators. To construct confidence intervals, we propose to use self-normalization. This leads to improved coverage vis-à-vis the normal approximation, while delivering slightly wider confidence intervals. A data-driven choice of the number of upper order statistics in the estimation is suggested and shown to work well in simulations. An application to stock index returns documents the improvements of CVaR and CES forecasts.
A structural break test for extremal dependence in β-mixing random vectors
We derive a structural break test for extremal dependence in β-mixing, possibly high-dimensional random vectors with either asymptotically dependent or asymptotically independent components. Existing tests require serially independent observations with asymptotically dependent components. To avoid estimating a long-run variance, we use self-normalization, which obviates the need to estimate the coefficient of tail dependence when components are asymptotically independent. Simulations show favourable empirical size and power of the test, which we apply to S&P 500 and DAX log-returns. We find evidence for one break in the coefficient of tail dependence for the upper and lower joint tail at the beginning of the 2007–08 financial crisis, leading to more extremal co-movement.