Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
8,477
result(s) for
"Sensing techniques"
Sort by:
THE ARCTIC CLOUD PUZZLE
by
Brückner, Marlen
,
Gottschalk, Matthias
,
Wiedensohler, Alfred
in
Aerodynamics
,
Aerosol effects
,
Aerosol particles
2019
Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC) project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns.
Journal Article
Application and recent progress of inland water monitoring using remote sensing techniques
by
Cao, Qi
,
Yu, Gongliang
,
Qiao, Zhiyi
in
aerospace technology
,
Atmospheric Protection/Air Quality Control/Air Pollution
,
Chlorophyll
2023
Hyperspectral remote sensing, which retrieves the water quality parameters by direct high-resolution analysis of the electromagnetic spectrum reflected from the water surface, has been widely applied for inland water quality detection. Such a new approach provides an opportunity to generate real-time data from water with the noncontact method, largely improving working efficiency. By summarizing the development and current applications of hyperspectral remote sensing, we compare the relative merits of varying remote sensing platforms, popular inversion models, and the application of hyperspectral monitoring of chlorophyll-a (Chl-a), transparency, total suspended solids (TSS), colored dissolved organic matter (CDOM), phycocyanin (PC), total phosphorus (TP), and total nitrogen (TN) water quality parameters. Most studies have focused on spaceborne remote sensing, which is usually used to monitor large waterbodies for Chl-a and other water quality parameters with optical properties; semiempirical, bio-optical, and semianalytical models are frequently used. With the rapid development of aerospace technology and near-surface remote sensing, the spectral resolution of remote sensing imaging technology has been dramatically improved and has begun to be applied to small waterbodies. In the future, the multiplatform linkage monitoring approach may become a new research direction. Advanced computer technology has also enabled machine learning models to be applied to water quality parameter inversion, and machine learning models have higher robustness than the three commonly used models mentioned above. Although nitrogen and phosphorus, with nonoptical properties, have also received attention and research from some scholars in recent years, the uncertainty of their mechanisms makes it necessary to maintain a cautious attitude when treating such research.
Journal Article
Estimating Reservoir Sedimentation Rates and Storage Capacity Losses Using High‐Resolution Sentinel‐2 Satellite and Water Level Data
2023
In nearly all reservoirs, storage capacity is steadily lost due to trapping and accumulation of sediment. Despite critical importance to freshwater supplies, reservoir sedimentation rates are poorly understood due to sparse bathymetry survey data and challenges in modeling sedimentation sequestration. Here, we proposed a novel approach to estimate reservoir sedimentation rates and storage capacity losses using high‐resolution Sentinel‐2 satellites and daily in situ water levels. Validated on eight reservoirs across the central and western United States, the estimated reservoir bathymetry and sedimentation rates have a mean error of 4.08% and 0.05% yr−1, respectively. Estimated storage capacity losses to sediment vary among reservoirs, which overall agrees with the pattern from survey data. We also demonstrated the potential applications of the proposed approach to ungauged reservoirs by combining Sentinel‐2 with sub‐monthly water levels from recent satellite altimeters. Plain Language Summary Reservoir storage capacity is steadily lost due to sediment filling, which threatens freshwater supplies both now and in the future. Yet, lost reservoir storage capacities to sediment are largely unknown. Here, we develop a generic method to estimate capacity losses and reservoir sedimentation rates by leveraging remote sensing techniques. We tested on eight reservoirs across the central and western United States and found capacity losses and sedimentation rates vary across reservoirs. The proposed method offers a promising alternative to evaluate and predict capacity losses in reservoirs nationwide and globally, and thus supports effective water managements and planning for sustainable freshwater supplies in the future. Key Points High‐resolution Sentinel‐2 images and daily in situ water levels were used to estimate reservoir sedimentation rates and capacity losses Estimated reservoir sedimentation rates and storage capacity losses have a mean error of 0.05% yr−1 of full storage capacity Potential applications of this method to ungauged reservoirs are feasible with sub‐monthly level data from recent satellite altimeters
Journal Article
Application of magnetic data and satellite spectral imaging in identifying gold mineralization zones and its associated subsurface structures at Fawakheir-Attala area, Central Eastern Desert, Egypt
2024
The Fawakheir-Attala gold mining zone in Egypt’s Central Eastern Desert features a diverse range of rock formations, including Precambrian crystalline rocks and Phanerozoic sedimentary formations. These formations encompass gneisses, metavolcanics, metasediments, a metagabbro-diorite complex, Dokhan volcanic rocks, and granitic rocks, alongside lower and upper Nubia sandstones. Faults and shear zones are pivotal in controlling gold mineralization within the area, indicative of substantial mineral wealth. This study aimed to map subsurface structural characteristics and investigate gold mineralization zones using aerial magnetic data and ASTER remote sensing, the latter of which played a crucial role in highlighting the surface exposure of alteration zones. Geological surveys combined with remote sensing techniques were employed to identify rock types and mineralization zones, while magnetic methods, including aeromagnetic surveys and ground-based studies, were used to reveal underlying structural properties and fault systems. Analysis of aeromagnetic data revealed a large mineralization zone running from the Fawakhir Gold mine through the Attala Gold mine in a NW–SE direction. Various structural trends and faults, including NW–SE, NE–SW, E–W, and N–S directions, were identified, strongly associated with hydrothermal alteration zones and gold mineralization. Shallow basement relief was observed in the eastern and central regions, contrasting with deeper formations and greater relief in the western section. Land magnetic surveys were utilized to identify new areas for gold mineralization, with geochemical analysis confirming gold content in quartz veins and host rocks. The integration of magnetic and remote sensing techniques effectively highlighted alteration zones indicative of potential mineralization, which could have a subsurface continuation, aiding in the identification of gold occurrences connected to faults, lineaments, and mineralization zones.
Journal Article
Assessing the impact of land use and land cover on river water quality using water quality index and remote sensing techniques
by
Gani, Md Ataul
,
Siddik, Md Abubakkor
,
Md Moniruzzaman
in
Agricultural land
,
Atmospheric Protection/Air Quality Control/Air Pollution
,
Bangladesh
2023
The impact of land use on water quality is becoming a global concern due to the increasing demand for freshwater. This study aimed to assess the effects of land use and land cover (LULC) on the surface water quality of the Buriganga, Dhaleshwari, Meghna, and Padma river system in Bangladesh. To determine the state of water, water samples were collected from twelve locations in the Buriganga, Dhaleshwari, Meghna, and Padma rivers during the winter season of 2015 and collected samples were analysed for seven water quality indicators: pH, temperature (Temp.), conductivity (Cond.), dissolved oxygen (DO), biological oxygen demand (BOD), nitrate nitrogen (NO
3
-N), and soluble reactive phosphorus (SRP) for assessing water quality (WQ). Additionally, same-period satellite imagery (Landsat-8) was utilised to classify the LULC using the object-based image analysis (OBIA) technique. The overall accuracy assessment and kappa co-efficient value of post-classified images were 92% and 0.89, respectively. In this research, the root mean squared water quality index (RMS-WQI) model was used to determine the WQ status, and satellite imagery was utilised to classify LULC types. Most of the WQs were found within the ECR guideline level for surface water. The RMS-WQI result showed that the “fair” status of water quality found in all sampling sites ranges from 66.50 to 79.08, and the water quality is satisfactory. Four types of LULC were categorised in the study area mainly comprised of agricultural land (37.33%), followed by built-up area (24.76%), vegetation (9.5%), and water bodies (28.41%). Finally, the Principal component analysis (PCA) techniques were used to find out significant WQ indicators and the correlation matrix revealed that WQ had a substantial positive correlation with agricultural land (
r
= 0.68,
P
< 0.01) and a significant negative association with the built-up area (
r
= − 0.94,
P
< 0.01). To the best of the authors’ knowledge, this is the first attempt in Bangladesh to assess the impact of LULC on the water quality along the longitudinal gradient of a vast river system. Hence, we believe that the findings of this study can support planners and environmentalists to plan and design landscapes and protect the river environment.
Journal Article
Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques
2020
Vegetation has a tremendous influence on snow processes and snowpack dynamics, yet remote sensing techniques to resolve the spatial variability of sub-canopy snow depth are not always available and are difficult from space-based platforms. Unmanned aerial vehicles (UAVs) have had recent widespread application to capture high-resolution information on snow processes and are herein applied to the sub-canopy snow depth challenge. Previous demonstrations of snow depth mapping with UAV structure from motion (SfM) and airborne lidar have focussed on non-vegetated surfaces or reported large errors in the presence of vegetation. In contrast, UAV-lidar systems have high-density point clouds and measure returns from a wide range of scan angles, increasing the likelihood of successfully sensing the sub-canopy snow depth. The effectiveness of UAV lidar and UAV SfM in mapping snow depth in both open and forested terrain was tested in a 2019 field campaign at the Canadian Rockies Hydrological Observatory, Alberta, and at Canadian prairie sites near Saskatoon, Saskatchewan, Canada. Only UAV lidar could successfully measure the sub-canopy snow surface with reliable sub-canopy point coverage and consistent error metrics (root mean square error (RMSE) <0.17 m and bias −0.03 to −0.13 m). Relative to UAV lidar, UAV SfM did not consistently sense the sub-canopy snow surface, the interpolation needed to account for point cloud gaps introduced interpolation artefacts, and error metrics demonstrated relatively large variability (RMSE<0.33 m and bias 0.08 to −0.14 m). With the demonstration of sub-canopy snow depth mapping capabilities, a number of early applications are presented to showcase the ability of UAV lidar to effectively quantify the many multiscale snow processes defining snowpack dynamics in mountain and prairie environments.
Journal Article
Field Data Analysis and Weather Scenario of a Downburst Event in Livorno, Italy, on 1 October 2012
by
Zhang, Shi
,
Hangan, Horia
,
Burlando, Massimiliano
in
Analysis
,
Anemometers
,
Civil engineering
2017
The Mediterranean is a “hot spot” for the genesis of different types of severe weather events, including potentially damaging wind phenomena like downbursts, whose occurrence and evolution in this geographical region have not been documented in the literature. This paper is part of an interdisciplinary collaboration between atmospheric scientists and wind engineers with the objective of conducting a comprehensive analysis of the field measurements and weather scenarios related to nonsynoptic wind systems in this area. The downburst that struck the Livorno coast of Italy at about 1310 local time 1 October 2012 is investigated as a relevant test case for such severe wind events. The wind velocity records detected by ultrasonic anemometers, part of a monitoring network created for the European “Wind and Ports” and “Wind, Ports and Sea” projects, are analyzed and decomposed in order to inspect the main statistical features of this transient event. The analysis of the meteorological precursors to this event is carried out making use of model analyses, standard in situ measurements, remote sensing techniques, proxy data, and direct observations. The results obtained bring new insights into a downburst’s onset and detection in the Mediterranean, its evolution at the local scale, and possible connections to specific synoptic-scale weather conditions like secondary cyclogenesis in the lee of the Alps.
Journal Article
Continuous ground monitoring of vegetation optical depth and water content with GPS signals
2023
Satellite microwave remote sensing techniques can be used to monitor vegetation optical depth (VOD), a metric which is directly linked to vegetation biomass and water content. However, these large-scale measurements are still difficult to reference against either rare or not directly comparable field observations. So far, in situ estimates of canopy biomass or water status often rely on infrequent and time-consuming destructive samples, which are not necessarily representative of the canopy scale. Here, we present a simple technique based on Global Navigation Satellite Systems (GNSS) with the potential to bridge this persisting scale gap. Because GNSS microwave signals are attenuated and scattered by vegetation and liquid water, placing a GNSS sensor under a vegetated canopy and measuring changes in signal strength over time can provide continuous information about VOD and thus on vegetation biomass and water content. We test this technique at a forested site in southern California for a period of 8 months. We show that variations in GNSS signal-to-noise ratios reflect the overall distribution of biomass density in the canopy and can be monitored continuously. For the first time, we show that this technique can resolve diurnal variations in VOD and canopy water content at hourly to sub-hourly time steps. Using a model of canopy transmissivity to assess these diurnal signals, we find that temperature effects on the vegetation dielectric constant, and thus on VOD, may be non-negligible at the diurnal scale or during extreme events like heat waves. Sensitivity to rainfall and dew deposition events also suggests that canopy water interception can be monitored with this approach. The technique presented here has the potential to resolve two important knowledge gaps, namely the lack of ground truth observations for satellite-based VOD and the need for a reliable proxy to extrapolate isolated and labor-intensive in situ measurements of biomass, canopy water content, or leaf water potential. We provide recommendations for deploying such off-the-shelf and easy-to-use systems at existing ecohydrological monitoring networks such as FluxNet or SapfluxNet.
Journal Article