Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
460 result(s) for "Sensory Gating - physiology"
Sort by:
Improvement of Prepulse Inhibition and Executive Function by the COMT Inhibitor Tolcapone Depends on COMT Val158Met Polymorphism
Recent evidence suggests that prepulse inhibition (PPI) levels relate to executive function possibly by a prefrontal cortex (PFC) dopamine (DA) link. We explored the effects of enhanced PFC DA signaling by the nonstimulant catechol-O-methyltransferase (COMT) inhibitor tolcapone, on PPI and working memory of subjects homozygous for the Val (low PFC DA) and the Met (high PFC DA) alleles of the COMT Val158Met polymorphism. Twelve Val/Val and eleven Met/Met healthy male subjects entered the study. Tolcapone 200 mg was administered in two weekly sessions, according to a balanced, crossover, double-blind, placebo-controlled design. PPI was assessed with 5 dB and 15 dB above background prepulses, at 30-, 60-, and 120 ms prepulse-pulse intervals. Subjects also underwent the n-back and the letter-number sequencing (LNS) tasks. PPI was lower in the Val/Val compared to the Met/Met group in the placebo condition. Tolcapone increased PPI significantly in the Val/Val group and tended to have the opposite effect in the Met/Met group. Baseline startle was not affected by tolcapone in the Val/Val group but it was slightly increased in the Met/Met group. Tolcapone improved performance in the n-back and LNS tasks only in the Val/Val group. Enhancement of PFC DA signaling with tolcapone improves both PPI and working memory in a COMT Val158Met genotype-specific manner. These results suggest that early information processing and working memory may both depend on PFC DA signaling, and that they may both relate to PFC DA levels according to an inverted U-shaped curve function.
Training Improves the Capacity of Visual Working Memory When It Is Adaptive, Individualized, and Targeted
The current study investigated whether training improves the capacity of visual working memory using individualized adaptive training methods. Two groups of participants were trained for two targeted processes, filtering and consolidation. Before and after the training, the participants, including those with no training, performed a lateralized change detection task in which one side of the visual display had to be selected and the other side ignored. Across ten-day training sessions, the participants performed two modified versions of the lateralized change detection task. The number of distractors and duration of the consolidation period were adjusted individually to increase the task difficulty of the filtering and consolidation training, respectively. Results showed that the degree of improvement shown during the training was positively correlated with the increase in memory capacity, and training-induced benefits were most evident for larger set sizes in the filtering training group. These results suggest that visual working memory training is effective, especially when it is adaptive, individualized, and targeted.
Cholinergic modulation of auditory processing, sensory gating and novelty detection in human participants
Rationale Suppression of redundant auditory information and facilitation of deviant, novel, or salient sounds can be assessed with paired-click and oddball tasks, respectively. Electrophysiological correlates of perturbed auditory processing found in these paradigms are likely to be a trait marker or candidate endophenotype for schizophrenia. Objective This is the first study to investigate the effects of the muscarinic M1 antagonist biperiden and the cholinesterase inhibitor rivastigmine on auditory-evoked potentials (AEPs), sensory gating, and mismatch negativity (MMN) in young, healthy volunteers. Results Biperiden increased P50 amplitude and prolonged N100 and P200 latency in the paired-click task but did not affect sensory gating. Rivastigmine was able to reverse the effects of biperiden on N100 and P200 latency. Biperiden increased P50 latency in the novelty oddball task, which was reversed by concurrent administration of rivastigmine. Rivastigmine shortened N100 latency and enhanced P3a amplitude in the novelty oddball paradigm, both of which were reversed by biperiden. Conclusion The muscarinic M1 receptor appears to be involved in preattentive processing of auditory information in the paired-click task. Additional effects of biperiden versus rivastigmine were reversed by a combination treatment, which renders attribution of these findings to muscarinic M1 versus muscarinic M2–M5 or nicotinic receptors much more difficult. It remains to be seen whether the effects of cholinergic drugs on AEPs are specifically related to the abnormalities found in schizophrenia. Alternatively, aberrant auditory processing could also be indicative of a general disturbance in neural functioning shared by several neuropsychiatric disorders and/or neurodegenerative changes seen in aging.
Influence of Aripiprazole, Risperidone, and Amisulpride on Sensory and Sensorimotor Gating in Healthy ‘Low and High Gating’ Humans and Relation to Psychometry
Despite advances in the treatment of schizophrenia spectrum disorders with atypical antipsychotics (AAPs), there is still need for compounds with improved efficacy/side-effect ratios. Evidence from challenge studies suggests that the assessment of gating functions in humans and rodents with naturally low-gating levels might be a useful model to screen for novel compounds with antipsychotic properties. To further evaluate and extend this translational approach, three AAPs were examined. Compounds without antipsychotic properties served as negative control treatments. In a placebo-controlled, within-subject design, healthy males received either single doses of aripiprazole and risperidone (n=28), amisulpride and lorazepam (n=30), or modafinil and valproate (n=30), and placebo. Prepulse inhibiton (PPI) and P50 suppression were assessed. Clinically associated symptoms were evaluated using the SCL-90-R. Aripiprazole, risperidone, and amisulpride increased P50 suppression in low P50 gaters. Lorazepam, modafinil, and valproate did not influence P50 suppression in low gaters. Furthermore, low P50 gaters scored significantly higher on the SCL-90-R than high P50 gaters. Aripiprazole increased PPI in low PPI gaters, whereas modafinil and lorazepam attenuated PPI in both groups. Risperidone, amisulpride, and valproate did not influence PPI. P50 suppression in low gaters appears to be an antipsychotic-sensitive neurophysiologic marker. This conclusion is supported by the association of low P50 suppression and higher clinically associated scores. Furthermore, PPI might be sensitive for atypical mechanisms of antipsychotic medication. The translational model investigating differential effects of AAPs on gating in healthy subjects with naturally low gating can be beneficial for phase II/III development plans by providing additional information for critical decision making.
P50 amplitude reduction: a nicotinic receptor-mediated deficit in first-degree relatives of schizophrenia patients
Rationale Impaired P50 gating is a putative index of genetically mediated nicotinic dysfunction in schizophrenia. However, assessment is confounded, in patients, by differential effects of smoking, symptoms, and treatment. Objectives This double-blind placebo-controlled study was designed to tease apart the relationships among P50, acute and chronic nicotine exposure, and familial risk. Methods and results Experiment 1 : To assess the putative effects of genetic vulnerability without other confounds, 14 unaffected relatives of schizophrenia patients and 15 controls, all nonsmokers, were tested with/without 7 mg transdermal nicotine. Family members had reduced P50 amplitude to an initial auditory stimulus, but normal P50 gating. Nicotine decreased P50 amplitude in controls; family members had a mixed response: eight decreased and six increased P50 amplitude with nicotine. Experiment 2 : To assess chronic nicotine use and short-term withdrawal as a model of nicotinic dysfunction, 26 healthy smokers (14 abstinent for >12 h) received 21 mg transdermal nicotine. Chronic nicotine use, alone, did not alter P50 amplitude or gating. Short-term withdrawal resulted in decreased P50 amplitude, with no effect on P50 gating. Nicotine increased P50 amplitude in abstinent smokers and decreased it in nonabstinent smokers. Conclusions Familial vulnerability to schizophrenia reduces P50 amplitude. Nicotinic modulation of this deficit mirrors the effect of nicotine during smoking abstinence and suggests an “inverted-U” relationship between P50 amplitude and endogenous nicotinic activity. P50 amplitude may, therefore, be a sensitive marker of nicotinic dysfunction in individuals with familial risk for schizophrenia, which is mediated through mechanisms (e.g., α 4 β 2 receptors) that are distinct from those (e.g., α 7 receptors) that mediate P50 gating.
Attention modulates the gating of primary somatosensory oscillations
Sensory gating (SG) is a well-studied phenomenon in which neural responses are reduced to identical stimuli presented in succession, and is thought to represent the functional inhibition of primary sensory information that is redundant in nature. SG is traditionally considered pre-attentive, but little is known about the effects of attentional state on this process. In this study, we investigate the impact of directed attention on somatosensory SG using magnetoencephalography. Healthy young adults (n ​= ​26) performed a novel somato-visual paired-pulse oddball paradigm, in which attention was directed towards or away from paired-pulse stimulation of the left median nerve. We observed a robust evoked (i.e., phase-locked) somatosensory response in the time domain, and three stereotyped oscillatory responses in the time-frequency domain including an early theta response (4–8 ​Hz), and later alpha (8–14 ​Hz) and beta (20–26 ​Hz) responses across attentional states. The amplitudes of the evoked response and the theta and beta oscillations were gated for the second stimulus, however, only the gating of the oscillatory responses was altered by attention. Specifically, directing attention to the somatosensory domain enhanced SG of the early theta response, while reducing SG of the later alpha and beta responses. Further, prefrontal alpha-band coherence with the primary somatosensory cortex was greater when attention was directed towards the somatosensory domain, supporting a frontal modulatory effect on the alpha response in primary somatosensory regions. These findings highlight the dynamic effects of attentional modulation on somatosensory processing, and the importance of considering attentional state in studies of SG. •Adults completed a novel somato-visual stimulation paradigm during MEG.•Attention was directed either towards or away from the somatosensory domain.•Sensory gating (SG) of neural responses to paired-pulse stimulation was examined.•Attention to the somatosensory domain altered SG of neural oscillatory responses.•Attention enhanced coherence between frontal and primary somatosensory cortices.
Meta-Analysis of Sensorimotor Gating Deficits in Patients With Schizophrenia Evaluated by Prepulse Inhibition Test
Abstracts Prepulse inhibition (PPI) of startle is an operational measure of sensorimotor gating that is often impaired in patients with schizophrenia. Despite the large number of studies, there is considerable variation in PPI outcomes reported. We conducted a systematic review and meta-analysis investigating PPI impairment in patients with schizophrenia compared with healthy control subjects, and examined possible explanations for the variation in results between studies. Major databases were screened for observational studies comparing healthy subjects and patients with schizophrenia for the prepulse and pulse intervals of 60 and 120 ms as primary outcomes, ie, PPI-60 and PPI-120. Standardized mean difference (SMD) and 95% confidence intervals (CI) were extracted and pooled using random effects models. We then estimated the mean effect size of these measures with random effects meta-analyses and evaluated potential PPI heterogeneity moderators, using sensitivity analysis and meta-regressions. Sixty-seven primary studies were identified, with 3685 healthy and 4290 patients with schizophrenia. The schizophrenia group showed reduction in sensorimotor gating for both PPI-60 (SMD = −0.50, 95% CI = [−0.61, −0.39]) and PPI-120 (SMD = −0.44, 95% CI = [−0.54, −0.33]). The sensitivity and meta-regression analysis showed that sample size, gender proportion, imbalance for gender, source of control group, and study continent were sources of heterogeneity (P < .05) for both PPI-60 and PPI-120 outcomes. Our findings confirm a global sensorimotor gating deficit in schizophrenia patients, with overall moderate effect size for PPI-60 and PPI-120. Methodological consistency should decrease the high level of heterogeneity of PPI results between studies.
Pramipexole effects on startle gating in rats and normal men
Background Dopamine D3 receptors regulate sensorimotor gating in rats, as evidenced by changes in prepulse inhibition (PPI) of startle after acute administration of D3 agonists and antagonists. In this study, we tested the effects of the D3-preferential agonist, pramipexole, on PPI in normal men and Sprague–Dawley rats. Materials and Methods Acoustic startle and PPI were tested in clinically normal men, comparing the effects of placebo vs. 0.125 mg ( n  = 20) or placebo vs. 0.1875 mg ( n  = 20) pramipexole, in double blind, crossover designs. These measures were also tested in male Sprague–Dawley rats using a parallel design [vehicle vs. 0.1 mg/kg ( n  = 8), vehicle vs. 0.3 mg/kg ( n  = 8) or vehicle vs. 1.0 mg/kg pramipexole ( n  = 8)]. Autonomic and subjective measures of pramipexole effects and several personality instruments were also measured in humans. Results Pramipexole increased drowsiness and significantly increased PPI at 120-ms intervals in humans; the latter effect was not moderated by baseline PPI or personality scale scores. In rats, pramipexole causes a dose-dependent reduction in long-interval (120 ms) PPI, while low doses actually increased short-interval (10–20 ms) PPI. Effects of pramipexole on PPI in rats were independent of baseline PPI and changes in startle magnitude. Conclusion The preferential D3 agonist pramipexole modifies PPI in humans and rats. Unlike indirect DA agonists and mixed D2/D3 agonists, pramipexole increases long-interval PPI in humans, in a manner that is independent of baseline PPI and personality measures. These findings are consistent with preclinical evidence for differences in the D2- and D3-mediated regulation of sensorimotor gating.
Inhibitory circuit gating of auditory critical-period plasticity
Cortical sensory maps are remodeled during early life to adapt to the surrounding environment. Both sensory and contextual signals are important for induction of this plasticity, but how these signals converge to sculpt developing thalamocortical circuits remains largely unknown. Here we show that layer 1 (L1) of primary auditory cortex (A1) is a key hub where neuromodulatory and topographically organized thalamic inputs meet to tune the cortical layers below. Inhibitory interneurons in L1 send narrowly descending projections to differentially modulate thalamic drive to pyramidal and parvalbumin-expressing (PV) cells in L4, creating brief windows of intracolumnar activation. Silencing of L1 (but not VIP-expressing) cells abolishes map plasticity during the tonotopic critical period. Developmental transitions in nicotinic acetylcholine receptor (nAChR) sensitivity in these cells caused by Lynx1 protein can be overridden to extend critical-period closure. Notably, thalamocortical maps in L1 are themselves stable, and serve as a scaffold for cortical plasticity throughout life.
Adaptive disinhibitory gating by VIP interneurons permits associative learning
Learning drives behavioral adaptations necessary for survival. While plasticity of excitatory projection neurons during associative learning has been extensively studied, little is known about the contributions of local interneurons. Using fear conditioning as a model for associative learning, we found that behaviorally relevant, salient stimuli cause learning by tapping into a local microcircuit consisting of precisely connected subtypes of inhibitory interneurons. By employing deep-brain calcium imaging and optogenetics, we demonstrate that vasoactive intestinal peptide (VIP)-expressing interneurons in the basolateral amygdala are activated by aversive events and provide a mandatory disinhibitory signal for associative learning. Notably, VIP interneuron responses during learning are strongly modulated by expectations. Our findings indicate that VIP interneurons are a central component of a dynamic circuit motif that mediates adaptive disinhibitory gating to specifically learn about unexpected, salient events, thereby ensuring appropriate behavioral adaptations.