Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
27,552
result(s) for
"Sentiment analysis."
Sort by:
Data mining approaches for big data and sentiment analysis in social media
\"This book explores the key concepts of data mining and utilizing them on online social media platforms, offering valuable insight into data mining approaches for big data and sentiment analysis in online social media and covering many important security and other aspects and current trends\"-- Provided by publisher.
Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis
by
Sayed, Awny
,
Elgeldawi, Enas
,
Galal, Ahmed R.
in
Arabic language
,
Arabic sentiment analysis
,
Bayesian analysis
2021
Machine learning models are used today to solve problems within a broad span of disciplines. If the proper hyperparameter tuning of a machine learning classifier is performed, significantly higher accuracy can be obtained. In this paper, a comprehensive comparative analysis of various hyperparameter tuning techniques is performed; these are Grid Search, Random Search, Bayesian Optimization, Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). They are used to optimize the accuracy of six machine learning algorithms, namely, Logistic Regression (LR), Ridge Classifier (RC), Support Vector Machine Classifier (SVC), Decision Tree (DT), Random Forest (RF), and Naive Bayes (NB) classifiers. To test the performance of each hyperparameter tuning technique, the machine learning models are used to solve an Arabic sentiment classification problem. Sentiment analysis is the process of detecting whether a text carries a positive, negative, or neutral sentiment. However, extracting such sentiment from a complex derivational morphology language such as Arabic has been always very challenging. The performance of all classifiers is tested using our constructed dataset both before and after the hyperparameter tuning process. A detailed analysis is described, along with the strengths and limitations of each hyperparameter tuning technique. The results show that the highest accuracy was given by SVC both before and after the hyperparameter tuning process, with a score of 95.6208 obtained when using Bayesian Optimization.
Journal Article
Sentiment analysis using product review data
2015
Sentiment analysis or opinion mining is one of the major tasks of NLP (Natural Language Processing). Sentiment analysis has gain much attention in recent years. In this paper, we aim to tackle the problem of sentiment polarity categorization, which is one of the fundamental problems of sentiment analysis. A general process for sentiment polarity categorization is proposed with detailed process descriptions. Data used in this study are online product reviews collected from Amazon.com. Experiments for both sentence-level categorization and review-level categorization are performed with promising outcomes. At last, we also give insight into our future work on sentiment analysis.
Journal Article
Advanced applications of NLP and deep learning in social media data
\"The primary objective of this book is to build a better and safer social media space by making human language available on different social media platforms intelligible for machines with the blessings of AI. This book bridges the gap between Natural Language Processing (NLP), Advanced Machine(AML) and Deep Learning (DL), and Online Social Media. This book connects various interdisciplinary domains related to Natural Language Understanding, Deep machine Leaning Technology and will be highly beneficial for the students, researchers, and academicians working in this area as this book will cover state-of-the-art technologies around NLP and DML techniques and their role in Social Media Data Analysis. Furthermore, the OSN service providers will take the advantage of this book to update, modify and make better social platforms for its users. Psychiatrists and clinicians will also be beneficial as this book's main focus are to analyze the user behavior in Online Social networks which play a key ingredient in several psychological tests\"-- Provided by publisher.
Exploring aspect-based sentiment quadruple extraction with implicit aspects, opinions, and ChatGPT: a comprehensive survey
by
Alyasiri, Osamah Mohammed
,
An, Jieyu
,
Zhang, Hao
in
Artificial Intelligence
,
Attitudes
,
Chatbots
2024
In contrast to earlier ABSA studies primarily concentrating on individual sentiment components, recent research has ventured into more complex ABSA tasks encompassing multiple elements, including pair, triplet, and quadruple sentiment analysis. Quadruple sentiment analysis, also called aspect-category-opinion-sentiment quadruple Extraction (ACOSQE), aims to dissect aspect terms, aspect categories, opinion terms, and sentiment polarities while considering implicit sentiment within sentences. Nonetheless, a comprehensive overview of ACOSQE and its corresponding solutions is currently lacking. This is the precise gap that our survey seeks to address. To be more precise, we systematically reclassify all subtasks of ABSA, reorganizing existing research from the perspective of the involved sentiment elements, with a primary focus on the latest advancements in the ACOSQE task. Regarding solutions, our survey offers a comprehensive summary of the state-of-the-art utilization of language models within the ACOSQE task. Additionally, we explore the application of ChatGPT in sentiment analysis. Finally, we review emerging trends and discuss the challenges, providing insights into potential future directions for ACOSQE within the broader context of ABSA.
Journal Article
A novel hybrid deep learning IChOA-CNN-LSTM model for modality-enriched and multilingual emotion recognition in social media
2024
In the rapidly evolving field of artificial intelligence, the importance of multimodal sentiment analysis has never been more evident, especially amid the ongoing COVID-19 pandemic. Our research addresses the critical need to understand public sentiment across various dimensions of this crisis by integrating data from multiple modalities, such as text, images, audio, and videos sourced from platforms like Twitter. Conventional methods, which primarily focus on text analysis, often fall short in capturing the nuanced intricacies of emotional states, necessitating a more comprehensive approach. To tackle this challenge, our proposed framework introduces a novel hybrid model, IChOA-CNN-LSTM, which leverages Convolutional Neural Networks (CNNs) for precise image feature extraction, Long Short-Term Memory (LSTM) networks for sequential data analysis, and an Improved Chimp Optimization Algorithm for effective feature fusion. Remarkably, our model achieves an impressive accuracy rate of 97.8%, outperforming existing approaches in the field. Additionally, by integrating the GeoCoV19 dataset, we facilitate a comprehensive analysis that spans linguistic and geographical boundaries, enriching our understanding of global pandemic discourse and providing critical insights for informed decision-making in public health crises. Through this holistic approach and innovative techniques, our research significantly advances multimodal sentiment analysis, offering a robust framework for deciphering the complex interplay of emotions during unprecedented global challenges like the COVID-19 pandemic.
Journal Article
\Challenges and future in deep learning for sentiment analysis: a comprehensive review and a proposed novel hybrid approach\
by
Moni, Mohammad Ali
,
Islam, Md. Shofiqul
,
Ghani, Ngahzaifa Ab
in
Accuracy
,
Analysis
,
Artificial Intelligence
2024
Social media is used to categorise products or services, but analysing vast comments is time-consuming. Researchers use sentiment analysis via natural language processing, evaluating methods and results conventionally through literature reviews and assessments. However, our approach diverges by offering a thorough analytical perspective with critical analysis, research findings, identified gaps, limitations, challenges and future prospects specific to deep learning-based sentiment analysis in recent times. Furthermore, we provide in-depth investigation into sentiment analysis, categorizing prevalent data, pre-processing methods, text representations, learning models, and applications. We conduct a thorough evaluation of recent advances in deep learning architectures, assessing their pros and cons. Additionally, we offer a meticulous analysis of deep learning methodologies, integrating insights on applied tools, strengths, weaknesses, performance results, research gaps, and a detailed feature-based examination. Furthermore, we present in a thorough discussion of the challenges, drawbacks, and factors contributing to the successful enhancement of accuracy within the realm of sentiment analysis. A critical comparative analysis of our article clearly shows that capsule-based RNN approaches give the best results with an accuracy of 98.02% which is the CNN or RNN-based models. We implemented various advanced deep-learning models across four benchmarks to identify the top performers. Additionally, we introduced the innovative CRDC (Capsule with Deep CNN and Bi structured RNN) model, which demonstrated superior performance compared to other methods. Our proposed approach achieved remarkable accuracy across different databases: IMDB (88.15%), Toxic (98.28%), CrowdFlower (92.34%), and ER (95.48%). Hence, this method holds promise for automated sentiment analysis and potential deployment.
Journal Article
Improved whale optimization algorithm for feature selection in Arabic sentiment analysis
2019
To help individuals or companies make a systematic and more accurate decisions, sentiment analysis (SA) is used to evaluate the polarity of reviews. In SA, feature selection phase is an important phase for machine learning classifiers specifically when the datasets used in training is huge. Whale Optimization Algorithm (WOA) is one of the recent metaheuristic optimization algorithm that mimics the whale hunting mechanism. However, WOA suffers from the same problem faced by many other optimization algorithms and tend to fall in local optima. To overcome these problems, two improvements for WOA algorithm are proposed in this paper. The first improvement includes using Elite Opposition-Based Learning (EOBL) at initialization phase of WOA. The second improvement involves the incorporation of evolutionary operators from Differential Evolution algorithm at the end of each WOA iteration including mutation, crossover, and selection operators. In addition, we also used Information Gain (IG) as a filter features selection technique with WOA using Support Vector Machine (SVM) classifier to reduce the search space explored by WOA. To verify our proposed approach, four Arabic benchmark datasets for sentiment analysis are used since there are only a few studies in sentiment analysis conducted for Arabic language as compared to English. The proposed algorithm is compared with six well-known optimization algorithms and two deep learning algorithms. The comprehensive experiments results show that the proposed algorithm outperforms all other algorithms in terms of sentiment analysis classification accuracy through finding the best solutions, while its also minimizes the number of selected features.
Journal Article
Aspect-based drug review classification through a hybrid model with ant colony optimization using deep learning
2024
The task of aspect-level sentiment analysis is intricately designed to determine the sentiment polarity directed towards a specific target within a sentence. With the increasing availability of online reviews and the growing importance of healthcare decisions, analyzing drug reviews has become a critical task. Traditional sentiment analysis, which categorizes a whole review as positive, negative, or neutral, provides limited insights for consumers and healthcare professionals. Aspect-based sentiment analysis (ABSA) aims to overcome these limitations by identifying and evaluating the sentiment associated with specific aspects or attributes of drugs mentioned in the reviews. Various fields, including business, politics, and medicine, have been explored in the context of sentiment analysis. Automation of online user reviews allows pharmaceutical companies to assess large amounts of user feedback. This helps extract pharmacological efficacy and side effect insights. The data collected could improve pharmacovigilance. Reviewing user comments can provide valuable data that can be used to improve drug safety and efficacy monitoring procedures. This improves pharmacovigilance processes, improving pharmaceutical outcomes understanding and corporate decision-making. Therefore, we propose a pre-trained RoBERTa with a Bi-LSTM model to categorise drug reviews from online sources and pre-process the text data. Ant Colony Optimization can be used in feature selection for ABSA, helping to identify the most relevant aspects and sentiments. Further, RoBERTa is fine-tuned to perform ABSA on the dataset, enabling the system to categorize aspects and determine the associated sentiment. The outcomes reveal that the suggested framework has achieved higher accuracy (96.78%) and F1 score (98.29%) on druglib.com, and 95.02% on the drugs.com dataset, than several prior state-of-the-art methods.
Journal Article