Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
174
result(s) for
"Sentinel-1A"
Sort by:
Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region
2017
Winter wheat is the second largest food crop in China. It is important to obtain reliable winter wheat acreage to guarantee the food security for the most populous country in the world. This paper focuses on assessing the feasibility of in-season winter wheat mapping and investigating potential classification improvement by using SAR (Synthetic Aperture Radar) images, optical images, and the integration of both types of data in urban agricultural regions with complex planting structures in Southern China. Both SAR (Sentinel-1A) and optical (Landsat-8) data were acquired, and classification using different combinations of Sentinel-1A-derived information and optical images was performed using a support vector machine (SVM) and a random forest (RF) method. The interference coherence and texture images were obtained and used to assess the effect of adding them to the backscatter intensity images on the classification accuracy. The results showed that the use of four Sentinel-1A images acquired before the jointing period of winter wheat can provide satisfactory winter wheat classification accuracy, with an F1 measure of 87.89%. The combination of SAR and optical images for winter wheat mapping achieved the best F1 measure–up to 98.06%. The SVM was superior to RF in terms of the overall accuracy and the kappa coefficient, and was faster than RF, while the RF classifier was slightly better than SVM in terms of the F1 measure. In addition, the classification accuracy can be effectively improved by adding the texture and coherence images to the backscatter intensity data.
Journal Article
Estimation of Soil Organic Carbon Content in the Ebinur Lake Wetland, Xinjiang, China, Based on Multisource Remote Sensing Data and Ensemble Learning Algorithms
2022
Soil organic carbon (SOC), as the largest carbon pool on the land surface, plays an important role in soil quality, ecological security and the global carbon cycle. Multisource remote sensing data-driven modeling strategies are not well understood for accurately mapping soil organic carbon. Here, we hypothesized that the Sentinel-2 Multispectral Sensor Instrument (MSI) data-driven modeling strategy produced superior outcomes compared to modeling based on Landsat 8 Operational Land Imager (OLI) data due to the finer spatial and spectral resolutions of the Sentinel-2A MSI data. To test this hypothesis, the Ebinur Lake wetland in Xinjiang was selected as the study area. In this study, SOC estimation was carried out using Sentinel-2A and Landsat 8 data, combining climatic variables, topographic factors, index variables and Sentinel-1A data to construct a common variable model for Sentinel-2A data and Landsat 8 data, and a full variable model for Sentinel-2A data, respectively. We utilized ensemble learning algorithms to assess the prediction performance of modeling strategies, including random forest (RF), gradient boosted decision tree (GBDT) and extreme gradient boosting (XGBoost) algorithms. The results show that: (1) The Sentinel-2A model outperformed the Landsat 8 model in the prediction of SOC contents, and the Sentinel-2A full variable model under the XGBoost algorithm achieved the best results R2 = 0.804, RMSE = 1.771, RPIQ = 2.687). (2) The full variable model of Sentinel-2A with the addition of the red-edge band and red-edge index improved R2 by 6% and 3.2% over the common variable Landsat 8 and Sentinel-2A models, respectively. (3) In the SOC mapping of the Ebinur Lake wetland, the areas with higher SOC content were mainly concentrated in the oasis, while the mountainous and lakeside areas had lower SOC contents. Our results provide a program to monitor the sustainability of terrestrial ecosystems through a satellite perspective.
Journal Article
Mapping Early, Middle and Late Rice Extent Using Sentinel-1A and Landsat-8 Data in the Poyang Lake Plain, China
2018
Areas and spatial distribution information of paddy rice are important for managing food security, water use, and climate change. However, there are many difficulties in mapping paddy rice, especially mapping multi-season paddy rice in rainy regions, including differences in phenology, the influence of weather, and farmland fragmentation. To resolve these problems, a novel multi-season paddy rice mapping approach based on Sentinel-1A and Landsat-8 data is proposed. First, Sentinel-1A data were enhanced based on the fact that the backscattering coefficient of paddy rice varies according to its growth stage. Second, cropland information was enhanced based on the fact that the NDVI of cropland in winter is lower than that in the growing season. Then, paddy rice and cropland areas were extracted using a K-Means unsupervised classifier with enhanced images. Third, to further improve the paddy rice classification accuracy, cropland information was utilized to optimize distribution of paddy rice by the fact that paddy rice must be planted in cropland. Classification accuracy was validated based on ground-data from 25 field survey quadrats measuring 600 m × 600 m. The results show that: multi-season paddy rice planting areas effectively was extracted by the method and adjusted early rice area of 1630.84 km2, adjusted middle rice area of 556.21 km2, and adjusted late rice area of 3138.37 km2. The overall accuracy was 98.10%, with a kappa coefficient of 0.94.
Journal Article
Evaluation of Three Deep Learning Models for Early Crop Classification Using Sentinel-1A Imagery Time Series—A Case Study in Zhanjiang, China
by
Sun, Liang
,
Chen, Zhongxin
,
Jiang, Hao
in
Agricultural land
,
Ananas comosus
,
Artificial neural networks
2019
Timely and accurate estimation of the area and distribution of crops is vital for food security. Optical remote sensing has been a key technique for acquiring crop area and conditions on regional to global scales, but great challenges arise due to frequent cloudy days in southern China. This makes optical remote sensing images usually unavailable. Synthetic aperture radar (SAR) could bridge this gap since it is less affected by clouds. The recent availability of Sentinel-1A (S1A) SAR imagery with a 12-day revisit period at a high spatial resolution of about 10 m makes it possible to fully utilize phenological information to improve early crop classification. In deep learning methods, one-dimensional convolutional neural networks (1D CNNs), long short-term memory recurrent neural networks (LSTM RNNs), and gated recurrent unit RNNs (GRU RNNs) have been shown to efficiently extract temporal features for classification tasks. However, due to the complexity of training, these three deep learning methods have been less used in early crop classification. In this work, we attempted to combine them with an incremental classification method to avoid the need for training optimal architectures and hyper-parameters for data from each time series. First, we trained 1D CNNs, LSTM RNNs, and GRU RNNs based on the full images’ time series to attain three classifiers with optimal architectures and hyper-parameters. Then, starting at the first time point, we performed an incremental classification process to train each classifier using all of the previous data, and obtained a classification network with all parameter values (including the hyper-parameters) at each time point. Finally, test accuracies of each time point were assessed for each crop type to determine the optimal time series length. A case study was conducted in Suixi and Leizhou counties of Zhanjiang City, China. To verify the effectiveness of this method, we also implemented the classic random forest (RF) approach. The results were as follows: (i) 1D CNNs achieved the highest Kappa coefficient (0.942) of the four classifiers, and the highest value (0.934) in the GRU RNNs time series was attained earlier than with other classifiers; (ii) all three deep learning methods and the RF achieved F measures above 0.900 before the end of growth seasons of banana, eucalyptus, second-season paddy rice, and sugarcane; while, the 1D CNN classifier was the only one that could obtain an F-measure above 0.900 for pineapple before harvest. All results indicated the effectiveness of the solution combining the deep learning models with the incremental classification approach for early crop classification. This method is expected to provide new perspectives for early mapping of croplands in cloudy areas.
Journal Article
First Assessment of Sentinel-1A Data for Surface Soil Moisture Estimations Using a Coupled Water Cloud Model and Advanced Integral Equation Model over the Tibetan Plateau
2017
The spatiotemporal distribution of soil moisture over the Tibetan Plateau is important for understanding the regional water cycle and climate change. In this paper, the surface soil moisture in the northeastern Tibetan Plateau is estimated from time-series VV-polarized Sentinel-1A observations by coupling the water cloud model (WCM) and the advanced integral equation model (AIEM). The vegetation indicator in the WCM is represented by the leaf area index (LAI), which is smoothed and interpolated from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) LAI eight-day products. The AIEM requires accurate roughness parameters, which are parameterized by the effective roughness parameters. The first halves of the Sentinel-1A observations from October 2014 to May 2016 are adopted for the model calibration. The calibration results show that the backscattering coefficient (σ°) simulated from the coupled model are consistent with those of the Sentinel-1A with integrated Pearson’s correlation coefficients R of 0.80 and 0.92 for the ascending and descending data, respectively. The variability of soil moisture is correctly modeled by the coupled model. Based on the calibrated model, the soil moisture is retrieved using a look-up table method. The results show that the trends of the in situ soil moisture are effectively captured by the retrieved soil moisture with an integrated R of 0.60 and 0.82 for the ascending and descending data, respectively. The integrated bias, mean absolute error, and root mean square error are 0.006, 0.048, and 0.073 m3/m3 for the ascending data, and are 0.012, 0.026, and 0.055 m3/m3 for the descending data, respectively. Discussions of the effective roughness parameters and uncertainties in the LAI demonstrate the importance of accurate parameterizations of the surface roughness parameters and vegetation for the soil moisture retrieval. These results demonstrate the capability and reliability of Sentinel-1A data for estimating the soil moisture over the Tibetan Plateau. It is expected that our results can contribute to developing operational methods for soil moisture retrieval using the Sentinel-1A and Sentinel-1B satellites.
Journal Article
Estimation of Soil Moisture Applying Modified Dubois Model to Sentinel-1; A Regional Study from Central India
by
Singh, Abhilash
,
Meena, Ganesh Kumar
,
Gaurav, Kumar
in
modified Dubois model
,
NDVI
,
Sentinel-1A
2020
Surface soil moisture has a wide application in climate change, agronomy, water resources, and in many other domain of science and engineering. Measurement of soil moisture at high spatial and temporal resolution at regional and global scale is needed for the prediction of flood, drought, planning and management of agricultural productivity to ensure food security. Recent advancement in microwave remote sensing, especially after the launch of Sentinel operational satellites has enabled the scientific community to estimate soil moisture at higher spatial and temporal resolution with greater accuracy. This study evaluates the potential of Sentinel-1A satellite images to estimate soil moisture in a semi-arid region. Exactly at the time when satellite passes over the study area, we have collected soil samples at 37 different locations and measured the soil moisture from 5 cm below the ground surface using ML3 theta probe. We processed the soil samples in laboratory to obtain volumetric soil moisture using the oven dry method. We found soil moisture measured from calibrated theta probe and oven dry method are in good agreement with Root Mean Square Error (RMSE) 0.025 m 3 /m 3 and coefficient of determination (R 2 ) 0.85. We then processed Sentinel-1A images and applied modified Dubois model to calculate relative permittivity of the soil from the backscatter values ( σ ∘ ). The volumetric soil moisture at each pixel is then calculated by applying the universal Topp’s model. Finally, we masked the pixels whose Normalised Difference Vegetation Index (NDVI) value is greater than 0.4 to generate soil moisture map as per the Dubois NDVI criterion. Our modelled soil moisture accord with the measured values with RMSE = 0.035 and R 2 = 0.75. We found a small bias in the modelled soil moisture ( 0.02 m 3 / m 3 ). However, this has reduced significantly ( 0.001 m 3 / m 3 ) after applying a bias correction based on Cumulative Distribution Function (CDF) matching. Our approach provides a first-order estimate of soil moisture from Sentinel-1A images in sparsely vegetated agricultural land.
Journal Article
Integration of Sentinel-1A Radar and SMAP Radiometer for Soil Moisture Retrieval over Vegetated Areas
2024
NASA’s Soil Moisture Active Passive (SMAP) was originally designed to combine high-resolution active (radar) and coarse-resolution but highly sensitive passive (radiometer) L-band observations to achieve unprecedented spatial resolution and accuracy for soil moisture retrievals. However, shortly after SMAP was put into orbit, the radar component failed, and the high-resolution capability was lost. In this paper, the integration of an alternative radar sensor with the SMAP radiometer is proposed to enhance soil moisture retrieval capabilities over vegetated areas in the absence of the original high-resolution radar in the SMAP mission. ESA’s Sentinel-1A C-band radar was used in this study to enhance the spatial resolution of the SMAP L-band radiometer and to improve soil moisture retrieval accuracy. To achieve this purpose, we downscaled the 9 km radiometer data of the SMAP to 1 km utilizing the Smoothing Filter-based Intensity Modulation (SFIM) method. An Artificial Neural Network (ANN) was then trained to exploit the synergy between the Sentinel-1A radar, SMAP radiometer, and the in situ-measured soil moisture. An analysis of the data obtained for a plant growing season over the Mississippi Delta showed that the VH-polarized Sentinel-1A radar data can yield a coefficient of correlation of 0.81 and serve as a complimentary source to the SMAP radiometer for more accurate and enhanced soil moisture prediction over agricultural fields.
Journal Article
LAND COVER MAPPING USING SENTINEL-1 SAR DATA
2016
In this paper, the potential of using free-of-charge Sentinel-1 Synthetic Aperture Radar (SAR) imagery for land cover mapping in urban areas is investigated. To this aim, we use dual-pol (VV+VH) Interferometric Wide swath mode (IW) data collected on September 16th 2015 along descending orbit over Istanbul megacity, Turkey. Data have been calibrated, terrain corrected, and filtered by a 5x5 kernel using gamma map approach. During terrain correction by using a 25m resolution SRTM DEM, SAR data has been resampled resulting into a pixel spacing of 20m. Support Vector Machines (SVM) method has been implemented as a supervised pixel based image classification to classify the dataset. During the classification, different scenarios have been applied to find out the performance of Sentinel-1 data. The training and test data have been collected from high resolution image of Google Earth. Different combinations of VV and VH polarizations have been analysed and the resulting classified images have been assessed using overall classification accuracy and Kappa coefficient. Results demonstrate that, combining opportunely dual polarization data, the overall accuracy increases up to 93.28% against 73.85% and 70.74% of using individual polarization VV and VH, respectively. Our preliminary analysis points out that dual polarimetric Sentinel-1SAR data can be effectively exploited for producing accurate land cover maps, with relevant advantages for urban planning and management of large cities.
Journal Article
Deformation Monitoring and Analysis of Baige Landslide (China) Based on the Fusion Monitoring of Multi-Orbit Time-Series InSAR Technology
2024
Due to the limitations inherent in SAR satellite imaging modes, utilizing time-series InSAR technology to process single-orbit satellite image data typically only yields one-dimensional deformation information along the LOS direction. This constraint impedes a comprehensive representation of the true surface deformation of landslides. Consequently, in this paper, after the SBAS-InSAR and PS-InSAR processing of the 30-view ascending and 30-view descending orbit images of the Sentinel-1A satellite, based on the imaging geometric relationship of the SAR satellite, we propose a novel computational method of fusing ascending and descending orbital LOS-direction time-series deformation to extract the landslide’s downslope direction deformation of landslides. By applying this method to Baige landslide monitoring and integrating it with an improved tangential angle warning criterion, we classified the landslide’s trailing edge into a high-speed, a uniform-speed, and a low-speed deformation region, with deformation magnitudes of 7~8 cm, 5~7 cm, and 3~4 cm, respectively. A comparative analysis with measured data for landslide deformation monitoring revealed that the average root mean square error between the fused landslide’s downslope direction deformation and the measured data was a mere 3.62 mm. This represents a reduction of 56.9% and 57.5% in the average root mean square error compared to the single ascending and descending orbit LOS-direction time-series deformations, respectively, indicating higher monitoring accuracy. Finally, based on the analysis of landslide deformation and its inducing factors derived from the calculated time-series deformation results, it was determined that the precipitation, lithology of the strata, and ongoing geological activity are significant contributors to the sliding of the Baige land-slide. This method offers more comprehensive and accurate surface deformation information for dynamic landslide monitoring, aiding relevant departments in landslide surveillance and management, and providing technical recommendations for the fusion of multi-orbital satellite LOS-direction deformations to accurately reconstruct the true surface deformation of landslides.
Journal Article
Satellite-based assessment of the August 2018 flood in parts of Kerala, India
by
Sajinkumar, K.S.
,
Rani, V.R.
,
Thrivikramji, K.P.
in
August 2018 flood
,
Coastal plains
,
Excess rainfall
2019
From 1 June to 29 August 2018, Kerala, a state in southwestern India, recorded 36% excess rainfall than normal levels, leading to widespread floods and landslides events and resulting in 445 deaths. In this study, satellite-based data were used to map the flood inundation in the districts of Thrissur, Ernakulam, Alappuzha, Idukki and Kottayam. Specifically, flood delineation was enabled with Sentinel-1A radar data of 21 August 2018 and was compared with an average pre-flood, water-cover map based on Modified Normalized Difference Water Index (MNDWI) that was developed using a January and February 2018 Sentinel-2A dataset. A 90% increase in water cover was observed during the August 2018 flood event. Low lying areas in the coastal plains of Kuttanad and the Kole lands of Thrissur, had marked a rise of up to 5 and 10 m of water, respectively, during this deluge. These estimates are conservative as that the flood waters had started receding prior to the August 21 Sentinel-1A imagery.
Journal Article