Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,156 result(s) for "Sequence Analysis, RNA - veterinary"
Sort by:
Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing
Background Improvements in poultry production within the past 50 years have led to increased muscle yield and growth rate, which may be contributing to an increased rate and development of new muscle disorders in chickens. Previously reported muscle disorders and conditions are generally associated with poor meat quality traits and have a significant negative economic impact on the poultry industry. Recently, a novel myopathy phenotype has emerged which is characterized by palpably “hard” or tough breast muscle. The objective of this study is to identify the underlying biological mechanisms that contribute to this emerging muscle disorder colloquially referred to as “Wooden Breast”, through the use of RNA-sequencing technology. Methods We constructed cDNA libraries from five affected and six unaffected breast muscle samples from a line of commercial broiler chickens. After paired-end sequencing of samples using the Illumina Hiseq platform, we used Tophat to align the resulting sequence reads to the chicken reference genome and then used Cufflinks to find significant changes in gene transcript expression between each group. By comparing our gene list to previously published histology findings on this disorder and using Ingenuity Pathways Analysis (IPA®), we aim to develop a characteristic gene expression profile for this novel disorder through analyzing genes, gene families, and predicted biological pathways. Results Over 1500 genes were differentially expressed between affected and unaffected birds. There was an average of approximately 98 million reads per sample, across all samples. Results from the IPA analysis suggested “Diseases and Disorders” such as connective tissue disorders, “Molecular and Cellular Functions” such as cellular assembly and organization, cellular function and maintenance, and cellular movement, “Physiological System Development and Function” such as tissue development, and embryonic development, and “Top Canonical Pathways” such as, coagulation system, axonal guidance signaling, and acute phase response signaling, are associated with the Wooden Breast disease. Conclusions There is convincing evidence by RNA-seq analysis to support localized hypoxia, oxidative stress, increased intracellular calcium, as well as the possible presence of muscle fiber-type switching, as key features of Wooden Breast Disease, which are supported by reported microscopic lesions of the disease.
A comparative analysis of library prep approaches for sequencing low input translatome samples
Background Cell type-specific ribosome-pulldown has become an increasingly popular method for analysis of gene expression. It allows for expression analysis from intact tissues and monitoring of protein synthesis in vivo. However, while its utility has been assessed, technical aspects related to sequencing of these samples, often starting with a smaller amount of RNA, have not been reported. In this study, we evaluated the performance of five library prep protocols for ribosome-associated mRNAs when only 250 pg-4 ng of total RNA are used. Results We obtained total and RiboTag-IP RNA, in three biological replicates. We compared 5 methods of library preparation for Illumina Next Generation sequencing: NuGEN Ovation RNA-Seq system V2 Kit, TaKaRa SMARTer Stranded Total RNA-Seq Kit, TaKaRa SMART-Seq v4 Ultra Low Input RNA Kit, Illumina TruSeq RNA Library Prep Kit v2 and NEBNext® Ultra™ Directional RNA Library Prep Kit using slightly modified protocols each with 4 ng of total RNA. An additional set of samples was processed using the TruSeq kit with 70 ng, as a ‘gold standard’ control and the SMART-Seq v4 with 250 pg of total RNA. TruSeq-processed samples had the best metrics overall, with similar results for the 4 ng and 70 ng samples. The results of the SMART-Seq v4 processed samples were similar to TruSeq (Spearman correlation > 0.8) despite using lower amount of input RNA. All RiboTag-IP samples had an increase in the intronic reads compared with the corresponding whole tissue, suggesting that the IP captures some immature mRNAs. The SMARTer-processed samples had a higher representation of ribosomal and non-coding RNAs leading to lower representation of protein coding mRNA. The enrichment or depletion of IP samples compared to corresponding input RNA was similar across all kits except for SMARTer kit. Conclusion RiboTag-seq can be performed successfully with as little as 250 pg of total RNA when using the SMART-Seq v4 kit and 4 ng when using the modified protocols of other library preparation kits. The SMART-Seq v4 and TruSeq kits resulted in the highest quality libraries. RiboTag IP RNA contains some immature transcripts.
Comprehensive gene expression analysis in gallbladder mucosal epithelial cells of dogs with gallbladder mucocele
Background Gallbladder mucocele (GBM) is a common disease in the canine gallbladder. Although the pathogenesis of GBM remains unclear, we recently reported that the excessive accumulation of mucin in the gallbladder is not a result of overproduction by gallbladder epithelial cells (GBECs). Hypothesis/Objectives Changes in the function of GBECs other than the production of mucin are associated with the pathogenesis of GBM. We performed an RNA sequencing (RNA‐seq) analysis to comprehensively search for abnormalities in gene expression profiles of GBECs in dogs with GBM. Animals Fifteen dogs with GBM and 8 dogs euthanized for reasons other than gallbladder disease were included. Methods The GBECs were isolated from gallbladder tissues to extract RNA. The RNA‐seq analysis was performed using the samples from 3 GBM cases and 3 dogs with normal gallbladders, and the gene expression profiles were compared between the 2 groups. Differences in mRNA expression levels of the extracted differentially expressed genes (DEGs) were validated by quantitative reverse transcription polymerase chain reaction (RT‐qPCR) using samples of 15 GBM cases and 8 dogs with normal gallbladders. Results Comparison of gene expression profiles by RNA‐seq extracted 367 DEGs, including ANO1, a chloride channel associated with changes in mucin morphology, and HTR4, which regulates the function of chloride channels. The ANO1 and HTR4 genes were confirmed to be downregulated in the GBM group by RT‐qPCR. Conclusions and Clinical Importance Our results suggest that GBM may be associated with decreased function of chloride channels expressed in GBECs.
Sequence-based Association Analysis Reveals an MGST1 eQTL with Pleiotropic Effects on Bovine Milk Composition
The mammary gland is a prolific lipogenic organ, synthesising copious amounts of triglycerides for secretion into milk. The fat content of milk varies widely both between and within species and recent independent genome-wide association studies have highlighted a milk fat percentage quantitative trait locus (QTL) of large effect on bovine chromosome 5. Although both EPS8 and MGST1 have been proposed to underlie these signals, the causative status of these genes has not been functionally confirmed. To investigate this QTL in detail, we report genome sequence-based imputation and association mapping in a population of 64,244 taurine cattle. This analysis reveals a cluster of 17 non-coding variants spanning MGST1 that are highly associated with milk fat percentage and a range of other milk composition traits. Further, we exploit a high-depth mammary RNA sequence dataset to conduct expression QTL (eQTL) mapping in 375 lactating cows, revealing a strong MGST1 eQTL underpinning these effects. These data demonstrate the utility of DNA and RNA sequence-based association mapping and implicate MGST1 , a gene with no obvious mechanistic relationship to milk composition regulation, as causally involved in these processes.
Identification and characterization of differentially expressed exosomal microRNAs in bovine milk infected with Staphylococcus aureus
Background MicroRNAs (miRNAs) in milk-derived exosomes may reflect pathophysiological changes caused by mastitis. This study profiled miRNAs in exosomes from both normal milk and mastitic milk infected by Staphylococcus aureus ( S. aureus ). The potential targets for differentially expressed (DE) miRNAs were predicted and the target genes for bta-miR-378 and bta-miR-185 were also validated. Results Total RNA from milk exosomes was collected from healthy cows ( n  = 3, the control group) and S. aureus infected cows ( n  = 6, the SA group). Two hundred ninety miRNAs (221 known and 69 novel ones) were identified. Among them, 22 known and 15 novel miRNAs were differentially expressed. Target genes of DE miRNAs were significantly enriched in intracellular protein transport, endoplasmic reticulum and identical protein binding. The expression of two miRNAs (bta-miR-378 and bta-miR-185) with high read counts and log 2 fold changes (> 3.5) was significantly higher in mastitic milk infected with S. aureus. One target gene ( VAT1L ) of bta-miR-378 and five target genes ( DYRK1B , MLLT3 , HP1BP3 , NPR2 and PGM1 ) of bta-miR-185 were validated. Conclusion DE miRNAs in exosomes from normal and S. aureus infected milk were identified. The predicted targets for two DE miRNAs (bta-miR-378 and bta-miR-185) were further validated. The linkage between the validated target genes and diseases suggested that we should pay particular attention to exosome miRNAs from mastitic milk in terms of milk safety.
The sockeye salmon genome, transcriptome, and analyses identifying population defining regions of the genome
Sockeye salmon (Oncorhynchus nerka) is a commercially and culturally important species to the people that live along the northern Pacific Ocean coast. There are two main sockeye salmon ecotypes-the ocean-going (anadromous) ecotype and the fresh-water ecotype known as kokanee. The goal of this study was to better understand the population structure of sockeye salmon and identify possible genomic differences among populations and between the two ecotypes. In pursuit of this goal, we generated the first reference sockeye salmon genome assembly and an RNA-seq transcriptome data set to better annotate features of the assembly. Resequenced whole-genomes of 140 sockeye salmon and kokanee were analyzed to understand population structure and identify genomic differences between ecotypes. Three distinct geographic and genetic groups were identified from analyses of the resequencing data. Nucleotide variants in an immunoglobulin heavy chain variable gene cluster on chromosome 26 were found to differentiate the northwestern group from the southern and upper Columbia River groups. Several candidate genes were found to be associated with the kokanee ecotype. Many of these genes were related to ammonia tolerance or vision. Finally, the sex chromosomes of this species were better characterized, and an alternative sex-determination mechanism was identified in a subset of upper Columbia River kokanee.
Combining information from genome-wide association and multi-tissue gene expression studies to elucidate factors underlying genetic variation for residual feed intake in Australian Angus cattle
Background Genome-wide association studies (GWAS) are extensively used to identify single nucleotide polymorphisms (SNP) underlying the genetic variation of complex traits. However, much uncertainly often still exists about the causal variants and genes at quantitative trait loci (QTL). The aim of this study was to identify QTL associated with residual feed intake (RFI) and genes in these regions whose expression is also associated with this trait. Angus cattle (2190 steers) with RFI records were genotyped and imputed to high density arrays (770 K) and used for a GWAS approach to identify QTL associated with RFI. RNA sequences from 126 Angus divergently selected for RFI were analyzed to identify the genes whose expression was significantly associated this trait with special attention to those genes residing in the QTL regions. Results The heritability for RFI estimated for this Angus population was 0.3. In a GWAS, we identified 78 SNPs associated with RFI on six QTL (on BTA1, BTA6, BTA14, BTA17, BTA20 and BTA26). The most significant SNP was found on chromosome BTA20 (rs42662073) and explained 4% of the genetic variance. The minor allele frequencies of significant SNPs ranged from 0.05 to 0.49. All regions, except on BTA17, showed a significant dominance effect. In 1 Mb windows surrounding the six significant QTL, we found 149 genes from which OAS2 , STC2 , SHOX , XKR4 , and SGMS1 were the closest to the most significant QTL on BTA17, BTA20, BTA1, BTA14, and BTA26, respectively. In a 2 Mb windows around the six significant QTL, we identified 15 genes whose expression was significantly associated with RFI: BTA20) NEURL1B and CPEB4 ; BTA17) RITA1 , CCDC42B , OAS2 , RPL6 , and ERP29 ; BTA26) A1CF , SGMS1 , PAPSS2 , and PTEN ; BTA1) MFSD1 and RARRES1 ; BTA14) ATP6V1H and MRPL15 . Conclusions Our results showed six QTL regions associated with RFI in a beef Angus population where five of these QTL contained genes that have expression associated with this trait. Therefore, here we show that integrating information from gene expression and GWAS studies can help to better understand the genetic mechanisms that determine variation in complex traits.
Transcriptome analysis unraveled potential mechanisms of resistance to Haemonchus contortus infection in Merino sheep populations bred for parasite resistance
Haemonchus contortus is one of the most pathogenic gastrointestinal nematodes in small ruminants. To understand molecular mechanisms underlying host resistance to this parasite, we used RNA-sequencing technology to compare the transcriptomic response of the abomasal tissue, the site of the host-parasite interaction, of Merino sheep bred to be either genetically resistant or susceptible to H. contortus infection. Two different selection flocks, the Haemonchus selection flock (HSF) and the Trichostrongylus selection flock (TSF), and each contains a resistant and susceptible line, were studied. The TSF flock was seemingly more responsive to both primary and repeated infections than HSF. A total of 127 and 726 genes displayed a significant difference in abundance between resistant and susceptible animals in response to a primary infection in HSF and TSF, respectively. Among them, 38 genes were significantly affected by infection in both flocks. Gene ontology (GO) enrichment of the differentially expressed genes identified in this study predicted the likely involvement of extracellular exosomes in the immune response to H. contortus infection. While the resistant lines in HSF and TSF relied on different mechanisms for the development of host resistance, adhesion and diapedesis of both agranulocytes and granulocytes, coagulation and complement cascades, and multiple pathways related to tissue repair likely played critical roles in the process. Our results offered a quantitative snapshot of changes in the host transcriptome induced by H. contortus infection and provided novel insights into molecular mechanisms of host resistance.
circSLC41A1 Resists Porcine Granulosa Cell Apoptosis and Follicular Atresia by Promoting SRSF1 through miR-9820-5p Sponging
Ovarian granulosa cell (GC) apoptosis is the major cause of follicular atresia. Regulation of non-coding RNAs (ncRNAs) was proved to be involved in regulatory mechanisms of GC apoptosis. circRNAs have been recognized to play important roles in cellular activity. However, the regulatory network of circRNAs in follicular atresia has not been fully validated. In this study, we report a new circRNA, circSLC41A1, which has higher expression in healthy follicles compared to atretic follicles, and confirm its circular structure using RNase R treatment. The resistant function of circSLC41A1 during GC apoptosis was detected by si-RNA transfection and the competitive binding of miR-9820-5p by circSLC41A1 and SRSF1 was detected with a dual-luciferase reporter assay and co-transfection of their inhibitors or siRNA. Additionally, we predicted the protein-coding potential of circSLC41A1 and analyzed the structure of circSLC41A1-134aa. Our study revealed that circSLC41A1 enhanced SRSF1 expression through competitive binding of miR-9820-5p and demonstrated a circSLC41A1–miR-9820-5p–SRSF1 regulatory axis in follicular GC apoptosis. The study adds to knowledge of the post-transcriptional regulation of follicular atresia and provides insight into the protein-coding function of circRNA.
Circulating microRNA as biomarkers of canine mammary carcinoma in dogs
Background Differentiating benign from canine malignant mammary tumors requires invasive surgical biopsy. Circulating microRNAs (miRNA) may represent promising minimally invasive cancer biomarkers in people and animals. Objectives To evaluate the serum mRNA profile between dogs with and without mammary carcinoma, and to determine if any of these markers have prognostic significance. Animals Ten healthy client‐owned female dogs (5 intact, 5 spayed) and 10 dogs with histologically confirmed mammary carcinoma were included; 9 were client‐owned, whereas 1 was a research colony dog. Methods Retrospective study. Serum miRNA was evaluated by RNA deep‐sequencing (RNAseq) and digital droplet PCR (dPCR).Expression of candidate biomarkers miR‐18a, miR‐19b, miR‐29b, miR‐34c, miR‐122, miR‐125a, and miR‐181a was compared with clinical characteristics, including grade, metastasis, and survival. Results 452 unique serum miRNAs were detected by RNAseq. Sixty‐five individual miRNAs were differentially expressed (>±1.5‐fold) and statistically significant between groups. Serum miR‐19b (P = .003) and miR‐125a (P < .001) were significantly higher in the mammary carcinoma group by dPCR. Both had high accuracy based on receiver operator characteristic area under the curve (0.930 for miR‐125a; 0.880 for miR‐19b). Circulating miR‐18a by RNAseq was significantly higher in mammary carcinoma dogs with histologic evidence of lymphatic invasion (P = 0.03). There was no significant association with any miRNA and survival or inflammatory status. Conclusions and Clinical Importance Circulating miRNAs are differentially expressed in dogs with mammary carcinoma. Serum miR‐19b and miR‐18a represent candidate biomarkers for diagnosis and prognosis, respectively.