Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,130
result(s) for
"Serine Endopeptidases - genetics"
Sort by:
Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics
by
Vaishnav, Eeshit Dhaval
,
Montoro, Daniel T.
,
Smillie, Christopher
in
631/114
,
631/250
,
631/326/596/4130
2021
Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of
ACE2
,
TMPRSS2
and
CTSL
across 107 single-cell RNA-sequencing studies from different tissues.
ACE2
,
TMPRSS2
and
CTSL
are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of
ACE2
,
TMPRSS2
and
CTSL
. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by
ACE2
+
TMPRSS2
+
cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial–macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.
An integrated analysis of over 100 single-cell and single-nucleus transcriptomics studies illustrates severe acute respiratory syndrome coronavirus 2 viral entry gene coexpression patterns across different human tissues, and shows association of age, smoking status and sex with viral entry gene expression in respiratory cell populations.
Journal Article
Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial
by
Cehelsky, Jeffrey
,
Liebow, Abigail
,
Frank-Kamenetsky, Maria
in
Adult
,
Biological and medical sciences
,
Cardiovascular disease
2014
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to LDL receptors, leading to their degradation. Genetics studies have shown that loss-of-function mutations in PCSK9 result in reduced plasma LDL cholesterol and decreased risk of coronary heart disease. We aimed to investigate the safety and efficacy of ALN-PCS, a small interfering RNA that inhibits PCSK9 synthesis, in healthy volunteers with raised cholesterol who were not on lipid-lowering treatment.
We did a randomised, single-blind, placebo-controlled, phase 1 dose-escalation study in healthy adult volunteers with serum LDL cholesterol of 3·00 mmol/L or higher. Participants were randomly assigned in a 3:1 ratio by computer algorithm to receive one dose of intravenous ALN-PCS (with doses ranging from 0·015 to 0·400 mg/kg) or placebo. The primary endpoint was safety and tolerability of ALN-PCS. Secondary endpoints were the pharmacokinetic characteristics of ALN-PCS and its pharmacodynamic effects on PCSK9 and LDL cholesterol. Study participants were masked to treatment assignment. Analysis was per protocol and we used ANCOVA to analyse pharmacodynamic endpoint data. This trial is registered with ClinicalTrials.gov, number NCT01437059.
Of 32 participants, 24 were randomly allocated to receive a single dose of ALN-PCS (0·015 mg/kg [n=3], 0·045 mg/kg [n=3], 0·090 mg/kg [n=3], 0·150 mg/kg [n=3], 0·250 mg/kg [n=6], or 0·400 mg/kg [n=6]) and eight to placebo. The proportions of patients affected by treatment-emergent adverse events were similar in the ALN-PCS and placebo groups (19 [79%] vs seven [88%]). ALN-PCS was rapidly distributed, with peak concentration and area under the curve (0 to last measurement) increasing in a roughly dose-proportional way across the dose range tested. In the group given 0·400 mg/kg of ALN-PCS, treatment resulted in a mean 70% reduction in circulating PCSK9 plasma protein (p<0·0001) and a mean 40% reduction in LDL cholesterol from baseline relative to placebo (p<0·0001).
Our results suggest that inhibition of PCSK9 synthesis by RNA interference (RNAi) provides a potentially safe mechanism to reduce LDL cholesterol concentration in healthy individuals with raised cholesterol. These results support the further assessment of ALN-PCS in patients with hypercholesterolaemia, including those being treated with statins. This study is the first to show an RNAi drug being used to affect a clinically validated endpoint (ie, LDL cholesterol) in human beings.
Alnylam Pharmaceuticals.
Journal Article
Comprehensive Whole-Genome and Candidate Gene Analysis for Response to Statin Therapy in the Treating to New Targets (TNT) Cohort
2009
Comprehensive Whole-Genome and Candidate Gene Analysis for Response to Statin Therapy in the Treating to New Targets (TNT) Cohort
John F. Thompson, PhD ;
Craig L. Hyde, PhD ;
Linda S. Wood, MS ;
Sara A. Paciga, MA ;
David A. Hinds, PhD ;
David R. Cox, MD, PhD ;
G. Kees Hovingh, MD, PhD and
John J.P. Kastelein, MD, PhD
From the Helicos BioSciences (J.F.T.), Cambridge, Mass; Molecular Medicine (J.F.T., L.S.W., S.A.P.) and Statistical Applications (C.L.H.), Pfizer Global Research and Development, Groton, Conn; Perlegen Sciences (D.A.H., D.R.C.), Mountain View, Calif; and Department of Vascular Medicine (G.K.H., J.J.P.K.), Academic Medical Center, Amsterdam, The Netherlands.
Correspondence to John J.P. Kastelein, MD, PhD, Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, Room F4-159.2, 1105 AZ Amsterdam, The Netherlands. E-mail j.j.kastelein{at}amc.uva.nl or j.s.jansen@amc.uva.nl
Received September 9, 2008; accepted January 26, 2009.
Background— Statins are effective at lowering low-density lipoprotein cholesterol and reducing risk of cardiovascular disease, but variability in response is not well understood. To address this, 5745 individuals from the Treating to New Targets (TNT) trial were genotyped in a combination of a whole-genome and candidate gene approach to identify associations with response to atorvastatin treatment.
Methods and Results— A total of 291 988 single-nucleotide polymorphisms (SNPs) from 1984 individuals were analyzed for association with statin response, followed by genotyping top hits in 3761 additional individuals. None was significant at the whole-genome level in either the initial or follow-up test sets for association with low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, or triglyceride response. In addition to the whole-genome platform, 23 candidate genes previously associated with statin response were analyzed in these 5745 individuals. Three SNPs in apoE were most highly associated with low-density lipoprotein cholesterol response, followed by 1 in PCSK9 with a similar effect size. At the candidate gene level, SNPs in HMGCR were also significant though the effect was less than with those in apoE and PCSK9 . rs7412/ apoE had the most significant association ( P =6 x 10 –30 ), and its high significance in the whole-genome study ( P =4 x 10 –9 ) confirmed the suitability of this population for detecting effects. Age and gender were found to influence low-density lipoprotein cholesterol response to a similar extent as the most pronounced genetic effects.
Conclusions— Among SNPs tested with an allele frequency of at least 5%, only SNPs in apoE are found to influence statin response significantly. Less frequent variants in PCSK9 and smaller effect sizes in SNPs in HMGCR were also revealed.
Key Words: genetics hypercholesterolemia hydroxymethylglutaryl coenzyme A reductase inhibitors myocardial infarction
CLINICAL PERSPECTIVE
The online-only Data Supplement is available at http://circgenetics.ahajournals.org/cgi/content/full/CIRCGENETICS.108.818062/DC1.
Related Article
Comprehensive Whole-Genome and Candidate Gene Analysis for Response to Statin Therapy in the Treating to New Targets (TNT) Cohort
John F. Thompson, Craig L. Hyde, Linda S. Wood, Sara A. Paciga, David A. Hinds, David R. Cox, G. Kees Hovingh, and John J.P. Kastelein
Circ Cardiovasc Genet 2009 2: 173-181.
[Abstract]
[Full Text]
[PDF]
Home | Subscriptions | Archives | Feedback | Authors | Help | Circulation Journals Home | AHA Journals Home | Search
Copyright © 2009 American Heart Association, Inc. All rights reserved. Unauthorized use prohibited.
var _rsCI=\"us-lippincott\";
var _rsCG=\"0\";
var _rsDN=\"//secure-us.imrworldwide.com/\";
var _rsSE=1;
var _rsSM=1.0;
Journal Article
A TMPRSS6-inhibiting mAb improves disease in a β-thalassemia mouse model and reduces iron in healthy humans
2025
β-Thalassemia is a genetic disorder arising from mutations in the β-globin gene, leading to ineffective erythropoiesis and iron overload. Ineffective erythropoiesis, a hallmark of β-thalassemia, is an important driver of iron overload, which contributes to liver fibrosis, diabetes, and cardiac disease. Iron homeostasis is regulated by the hormone hepcidin; BMP6/hemojuvelin-mediated (BMP6/HJV-mediated) signaling induces hepatic hepcidin expression via SMAD1/5, with transmembrane serine protease 6 (TMPRSS6) being a negative regulator of HJV. Individuals with loss-of-function mutations in the TMPRSS6 gene show increased circulating hepcidin and iron-refractory iron-deficiency anemia, suggesting that blocking TMPRSS6 may be a viable strategy to elevate hepcidin levels in β-thalassemia. We generated a human mAb (REGN7999) that inhibits TMPRSS6. In an Hbbth3/+ mouse model of β-thalassemia, REGN7999 treatment led to significant reductions in liver iron, reduced ineffective erythropoiesis, and showed improvements in RBC health, running distance during forced exercise, and bone density. In a phase I, doubleblind, randomized, placebo-controlled study in healthy human volunteers (NCT05481333), REGN7999 increased serum hepcidin and reduced serum iron with an acceptable tolerability profile. Our results suggest that, by both reducing iron and improving RBC function, inhibition of TMPRSS6 by REGN7999 may offer a therapy for iron overload and impaired erythropoiesis in β-thalassemia.
Journal Article
Degradation of Corneodesmosome Proteins by Two Serine Proteases of the Kallikrein Family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7
by
Brattsand, Maria
,
Egelrud, Torbjörn
,
Bernard, Dominique
in
Antibody Specificity
,
Biological and medical sciences
,
cadherin
2004
Corneodesmosin (CDSN), desmoglein 1 (DSG1), and desmocollin 1 (DSC1) are adhesive proteins of the extracellular part of the corneodesmosomes, the junctional structures that mediate corneocyte cohesion. The degradation of these proteins at the epidermis surface is necessary for desquamation. Two serine proteases of the kallikrein family synthesized as inactive precursors have been implicated in this process: the stratum corneum chymotryptic enzyme (SCCE/KLK7/hK7) and the stratum corneum tryptic enzyme (SCTE/KLK5/hK5). Here, we analyzed the capacity of these enzymes to cleave DSG1, DSC1, and epidermal or recombinant forms of CDSN, at an acidic pH close to that of the stratum corneum. SCCE directly cleaved CDSN and DSC1 but was unable to degrade DSG1. But incubation with SCTE induced degradation of the three corneodesmosomal components. Using the recombinant form of CDSN, either with its N-glycan chain or enzymatically deglycosylated, we also demonstrated that oligosaccharide residues do not protect CDSN against proteolysis by SCCE. Moreover, our results suggest that SCTE is able to activate the proform of SCCE. These results strongly suggest that the two kalikreins are involved in desquamation. A model is proposed for desquamation that could be regulated by a precisely controlled protease–protease inhibitor balance.
Journal Article
Genetic Variants of LDLR and PCSK9 Associated with Variations in Response to Antihypercholesterolemic Effects of Armolipid Plus with Berberine
2016
Armolipid Plus (AP) is a nutraceutical that contains policosanol, fermented rice with red yeast, berberine, coenzyme Q10, folic acid, and astaxanthin. It has been shown to be effective in reducing plasma LDL cholesterol (LDLc) levels. In the multicenter randomized trial NCT01562080, there was large interindividual variability in the plasma LDLc response to AP supplementation. We hypothesized that the variability in LDLc response to AP supplementation may be linked to LDLR and PCSK9 polymorphisms.
We sequenced the LDLR 3' and 5' untranslated regions (UTR) and the PCSK9 5' UTR of 102 participants with moderate hypercholesterolemia in trial NCT01562080. In this trial, 50 individuals were treated with AP supplementation and the rest with placebo.
Multiple linear regression analysis, using the response of LDLc levels to AP as the dependent variable, revealed that polymorphisms rs2149041 (c.-3383C>G) in the PCSK9 5' UTR and rs14158 (c.*52G>A) in the LDLR 3' UTR explained 14.1% and 6.4%, respectively, of the variability after adjusting for gender, age, and BMI of individuals. Combining polymorphisms rs2149041 and rs14158 explained 20.5% of this variability (p < 0.004).
Three polymorphisms in the 3' UTR region of LDLR, c.*52G>A, c.*504G>A, and c.*773A>G, and two at the 5' UTR region of PCSK9, c.-3383C>G and c.-2063A>G, were associated with response to AP. These results could explain the variability observed in the response to berberine among people with moderate hypercholesterolemia, and they may be useful in identifying patients who could potentially benefit from supplementation with AP.
Journal Article
The role of fibroblast activation protein in health and malignancy
2020
Fibroblast activation protein-α (FAP) is a type-II transmembrane serine protease expressed almost exclusively to pathological conditions including fibrosis, arthritis, and cancer. Across most cancer types, elevated FAP is associated with worse clinical outcomes. Despite the clear association between FAP and disease severity, the biological reasons underlying these clinical observations remain unclear. Here we review basic FAP biology and FAP’s role in non-oncologic and oncologic disease. We further explore how FAP may worsen clinical outcomes via its effects on extracellular matrix remodeling, intracellular signaling regulation, angiogenesis, epithelial-to-mesenchymal transition, and immunosuppression. Lastly, we discuss the potential to exploit FAP biology to improve clinical outcomes.
Journal Article
RQT complex dissociates ribosomes collided on endogenous RQC substrate SDD1
2020
Ribosome-associated quality control (RQC) represents a rescue pathway in eukaryotic cells that is triggered upon translational stalling. Collided ribosomes are recognized for subsequent dissociation followed by degradation of nascent peptides. However, endogenous RQC-inducing sequences and the mechanism underlying the ubiquitin-dependent ribosome dissociation remain poorly understood. Here, we identified SDD1 messenger RNA from Saccharomyces cerevisiae as an endogenous RQC substrate and reveal the mechanism of its mRNA-dependent and nascent peptide−dependent translational stalling. In vitro translation of SDD1 mRNA enabled the reconstitution of Hel2-dependent polyubiquitination of collided disomes and, preferentially, trisomes. The distinct trisome architecture, visualized using cryo-EM, provides the structural basis for the more-efficient recognition by Hel2 compared with that of disomes. Subsequently, the Slh1 helicase subunit of the RQC trigger (RQT) complex preferentially dissociates the first stalled polyubiquitinated ribosome in an ATP-dependent manner. Together, these findings provide fundamental mechanistic insights into RQC and its physiological role in maintaining cellular protein homeostasis.Identification of SDD1 mRNA from Saccharomyces cerevisiae as an endogenous RQC substrate allows analysis of the mechanism underlying translational stalling and Hel2-dependent polyubiquitination of collided ribosomes to provide insight into ribosome dissociation.
Journal Article
SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo
2022
The emergence of SARS-CoV-2 variants of concern with progressively increased transmissibility between humans is a threat to global public health. The Omicron variant of SARS-CoV-2 also evades immunity from natural infection or vaccines
1
, but it is unclear whether its exceptional transmissibility is due to immune evasion or intrinsic virological properties. Here we compared the replication competence and cellular tropism of the wild-type virus and the D614G, Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2) and Omicron (B.1.1.529) variants in ex vivo explant cultures of human bronchi and lungs. We also evaluated the dependence on TMPRSS2 and cathepsins for infection. We show that Omicron replicates faster than all other SARS-CoV-2 variants studied in the bronchi but less efficiently in the lung parenchyma. All variants of concern have similar cellular tropism compared to the wild type. Omicron is more dependent on cathepsins than the other variants of concern tested, suggesting that the Omicron variant enters cells through a different route compared with the other variants. The lower replication competence of Omicron in the human lungs may explain the reduced severity of Omicron that is now being reported in epidemiological studies, although determinants of severity are multifactorial. These findings provide important biological correlates to previous epidemiological observations.
Omicron replicates faster than the wild-type, D614G, Alpha, Beta and Delta SARS-CoV-2 variants in the bronchi but less efficiently in the lung parenchyma.
Journal Article
Genetics of 35 blood and urine biomarkers in the UK Biobank
2021
Clinical laboratory tests are a critical component of the continuum of care. We evaluate the genetic basis of 35 blood and urine laboratory measurements in the UK Biobank (
n
= 363,228 individuals). We identify 5,794 independent loci associated with at least one trait (
p
< 5 × 10
−9
), containing 3,374 fine-mapped associations and additional sets of large-effect (>0.1 s.d.) protein-altering, human leukocyte antigen (HLA) and copy number variant (CNV) associations. Through Mendelian randomization (MR) analysis, we discover 51 causal relationships, including previously known agonistic effects of urate on gout and cystatin C on stroke. Finally, we develop polygenic risk scores (PRSs) for each biomarker and build ‘multi-PRS’ models for diseases using 35 PRSs simultaneously, which improved chronic kidney disease, type 2 diabetes, gout and alcoholic cirrhosis genetic risk stratification in an independent dataset (FinnGen;
n
= 135,500) relative to single-disease PRSs. Together, our results delineate the genetic basis of biomarkers and their causal influences on diseases and improve genetic risk stratification for common diseases.
Genetic analysis of 35 blood and urine laboratory measurements from 363,228 individuals identifies 1,857 loci associated with at least one laboratory value.
Journal Article