Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,841 result(s) for "Serogroup"
Sort by:
Multicenter, Open-Label, Randomized Phase II Controlled Trial of an Investigational Recombinant Meningococcal Serogroup B Vaccine With and Without Outer Membrane Vesicles, Administered in Infancy
Background. In the absence of an efficacious broadly protective vaccine, serogroup B Neisseria meningitidis (MenB) is the leading cause of bacterial meningitis and septicemia in many industrialized countries. An investigational recombinant vaccine that contains 3 central proteins; Neisserial adhesin A (NadA), factor H binding protein (fHBP) and Neisserial heparin binding antigen (NHBA) has been developed. These antigens have been formulated with and without outer membrane vesicles (rMenB+OMV and rMenB, respectively) from the New Zealand epidemic strain (B:4:P1.7–2,4). In this trial, we assessed the immunogenicity of these formulations in infants, who are at greatest risk of contracting MenB disease. Methods. A total of 147 infants from the United Kingdom were enrolled and randomly assigned to receive rMenB or rMenB+OMV at 2, 4, 6, and 12 months of age or a single dose at 12 months of age. Serum samples taken before and after vaccination were assayed in a standardized serum bactericidal antibody assay against 7 MenB strains. Local and systemic reactogenicity were recorded for 7 days after each vaccination. Analysis was according to protocol. Results. After 3 doses, both vaccines were immunogenic against strains expressing homologous or related NadA and fHBP. rMenB+OMV demonstrated greater immunogenicity than did rMenB and was immunogenic against strains expressing homologous PorA. Both vaccines elicited anamnestic responses after the fourth dose. For both vaccines, responses were lower against strains expressing heterologous fHBP variants and after a single dose at 12 months. Conclusions. The rMenB+OMV vaccine has the potential to protect infants from MenB disease, although the breadth of protection afforded to heterologous antigens requires additional investigation.
Meningococcal B Vaccine and Meningococcal Carriage in Adolescents in Australia
Recently, a meningococcal vaccine for group B was approved and deployed into clinical practice. In this trial, the effect of widespread use of this vaccine on the nasopharyngeal carriage of meningococcus group B was assessed in more than 24,000 adolescents in Australia.
Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment
A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe. We assessed invasive MenB strains isolated mainly in the most recent full epidemiological year in England and Wales, France, Germany, Italy, and Norway. Meningococcal antigen typing system (MATS) results were linked to multilocus sequence typing and antigen sequence data. To investigate whether generalisation of coverage applied to the rest of Europe, we also assessed isolates from the Czech Republic and Spain. 1052 strains collected from July, 2007, to June, 2008, were assessed from England and Wales, France, Germany, Italy, and Norway. All MenB strains contained at least one gene encoding a major antigen in the vaccine. MATS predicted that 78% of all MenB strains would be killed by postvaccination sera (95% CI 63–90, range of point estimates 73–87% in individual country panels). Half of all strains and 64% of covered strains could be targeted by bactericidal antibodies against more than one vaccine antigen. Results for the 108 isolates from the Czech Republic and 300 from Spain were consistent with those for the other countries. MATS analysis showed that a multicomponent vaccine could protect against a substantial proportion of invasive MenB strains isolated in Europe. Monitoring of antigen expression, however, will be needed in the future. Novartis Vaccines and Diagnostics.
Neisseria meningitidis serogroup B causing invasive disease, Italy, 2010-2021
In Italy, Invasive Meningococcal Disease (IMD) due to Neisseria meningitidis serogroup B (MenB) showed the highest incidence rates in infants under one year of age. This study describes the main characteristics of MenB responsible for invasive diseases circulating in Italy from 2010 to 2021. Data collected within the framework of National Surveillance System (NSS) for IMD were analysed. Serogroup confirmed IMD cases were included in the study. For unspecified meningococcal serogroup, a multinomial model was used to impute the serogroup. Antimicrobial susceptibility and genotyping by Sanger or whole genome sequencing were performed on viable meningococci. Core genome MLST (cgMLST) was evaluated using a gene-by-gene approach, and MenDeVAR analyses were used to assess potential coverage by MenB vaccines. A total of 1845 IMD cases were reported to the NSS, of which 704 were laboratory confirmed as MenB and another 232 were statistically attributed to this serogroup. The highest incidence rate for IMD due to MenB was observed in infants <1 year, followed by children aged 1-4 years. MenB isolates were susceptible to antimicrobials except for 4 isolates, of which 2 resistant to penicillin G, 1 to rifampicin and 1 to ciprofloxacin. High genetic variability was observed, with clonal complex (cc) cc41/44 being replaced by the cc162 since 2015. MenDeVAR analyses highlighted a high proportion of genomes classified as \"insufficient data,\" especially among recent isolates. Despite the low incidence of IMD in Italy, MenB increased in specific age groups during the study period. Continuous genomic surveillance, including MenDeVAR monitoring, remains essential to detect changes in circulating MenB and predict vaccine coverage.
Molecular and WGS-based characterization of invasive Neisseria meningitidis isolates collected in Belgium (2016–2022) and MenB-FHbp vaccine coverage estimation of serogroup B
Invasive meningococcal disease (IMD) caused by Neisseria meningitidis can result in life-threatening meningitis and septicaemia. There are twelve serogroups of N. meningitidis, but most cases of IMD are caused by serogroups A, B, C, W, X and Y. In Europe, serogroup B (MenB) accounts for 51 % of documented cases as recently reported by the European Centre for Disease Prevention and Control (ECDC). As a major cause of IMD, genomic surveillance of circulating MenB strains and assessment of the potential impact of vaccination programs could help inform public health policy. In this study, a collection of 493 strains was analysed, collected in Belgium by the National Reference Centre between 2016 and 2022. Slide agglutination was used for serogroup determination and whole genome sequencing (WGS) was used to further characterize these strains. The observed serogroups were: MenB (n = 281), MenY (n = 95), MenW (n = 83), MenC (n = 30), non-groupable isolates (n = 2), MenE (n = 1) and MenX (n = 1). A higher prevalence of MenY and MenW was observed in older adults. MenB isolates were grouped into 110 sequence types (STs), 89 of which belonged to 16 clonal complexes (CCs). Coverage of the MenB-FHbp vaccine (Trumenba, bivalent rLP2086; Pfizer Inc., New York, NY, USA ipv Philadelphia) was predicted using the Meningococcal Deduced Vaccine Antigen Reactivity (MenDeVAR) index. Of the 281 MenB strains collected between 2016 and 2022, 89.1 % (lower limit – upper limit: 78.6–100.0 %) were predicted by MenDeVAR to be covered by the vaccine. This study highlights the benefits of a pathogen surveillance program and the need for experimental characterization of continuously evolving antigenic variants. •MenB was the leading cause of IMD in individuals under 65 years of age in Belgium from 2016 to 2022.•Increased prevalence of MenY and MenW observed in older adults.•High diversity of MenB isolates circulating in Belgium, with 110 STs detected, including 32 novel STs.•MenDeVAR predicts a coverage of 89.1 % for the MenB-FHbp vaccine (range: 78.6 % - 100.0 %).
Predicting the Susceptibility of Meningococcal Serogroup B Isolates to Bactericidal Antibodies Elicited by Bivalent rLP2086, a Novel Prophylactic Vaccine
Bivalent rLP2086 (Trumenba), a vaccine for prevention of Neisseria meningitidis serogroup B (NmB) disease, was licensed for use in adolescents and young adults after it was demonstrated that it elicits antibodies that initiate complement-mediated killing of invasive NmB isolates in a serum bactericidal assay with human complement (hSBA). The vaccine consists of two factor H binding proteins (fHBPs) representing divergent subfamilies to ensure broad coverage. Although it is the surrogate of efficacy, an hSBA is not suitable for testing large numbers of strains in local laboratories. Previously, an association between the in vitro fHBP surface expression level and the susceptibility of NmB isolates to killing was observed. Therefore, a flow cytometric meningococcal antigen surface expression (MEASURE) assay was developed and validated by using an antibody that binds to all fHBP variants from both fHBP subfamilies and accurately quantitates the level of fHBP expressed on the cell surface of NmB isolates with mean fluorescence intensity as the readout. Two collections of invasive NmB isolates ( n = 1,814, n = 109) were evaluated in the assay, with the smaller set also tested in hSBAs using individual and pooled human serum samples from young adults vaccinated with bivalent rLP2086. From these data, an analysis based on fHBP variant prevalence in the larger 1,814-isolate set showed that >91% of all meningococcal serogroup B isolates expressed sufficient levels of fHBP to be susceptible to bactericidal killing by vaccine-induced antibodies. IMPORTANCE Bivalent rLP2086 (Trumenba) vaccine, composed of two factor H binding proteins (fHBPs), was recently licensed for the prevention of N. meningitidis serogroup B (NmB) disease in individuals 10 to 25 years old in the United States. This study evaluated a large collection of NmB isolates from the United States and Europe by using a flow cytometric MEASURE assay to quantitate the surface expression of the vaccine antigen fHBP. We find that expression levels and the proportion of strains above the level associated with susceptibility in an hSBA are generally consistent across these geographic regions. Thus, the assay can be used to predict which NmB isolates are susceptible to killing in the hSBA and therefore is able to demonstrate an fHBP vaccine-induced bactericidal response. This work significantly advances our understanding of the potential for bivalent rLP2086 to provide broad coverage against diverse invasive-disease-causing NmB isolates. Bivalent rLP2086 (Trumenba) vaccine, composed of two factor H binding proteins (fHBPs), was recently licensed for the prevention of N. meningitidis serogroup B (NmB) disease in individuals 10 to 25 years old in the United States. This study evaluated a large collection of NmB isolates from the United States and Europe by using a flow cytometric MEASURE assay to quantitate the surface expression of the vaccine antigen fHBP. We find that expression levels and the proportion of strains above the level associated with susceptibility in an hSBA are generally consistent across these geographic regions. Thus, the assay can be used to predict which NmB isolates are susceptible to killing in the hSBA and therefore is able to demonstrate an fHBP vaccine-induced bactericidal response. This work significantly advances our understanding of the potential for bivalent rLP2086 to provide broad coverage against diverse invasive-disease-causing NmB isolates.
Meningococcal Factor H–Binding Protein Variants Expressed by Epidemic Capsular Group A, W-135, and X Strains from Africa
BackgroundMeningococcal epidemics in Africa are generally caused by capsular group A strains, but W-135 or X strains also cause epidemics in this region. Factor H–binding protein (fHbp) is a novel antigen being investigated for use in group B vaccines. Little is known about fHbp in strains from other capsular groups MethodsWe investigated fHbp in 35 group A, W-135, and X strains from Africa ResultsThe 22 group A isolates, which included each of the sequence types (STs) responsible for epidemics since 1963, and 4 group X and 3 group W-135 isolates from recent epidemics had genes encoding fHbp in antigenic variant group 1. The remaining 6 W-135 isolates had fHbp variant 2. Within each fHbp variant group, there was 92%–100% amino acid identity, and the proteins expressed conserved epitopes recognized by bactericidal monoclonal antibodies. Serum samples obtained from mice vaccinated with native outer membrane vesicle vaccines from mutants engineered to express fHbp variants had broad bactericidal activity against group A, W-135, or X strains ConclusionsDespite extensive natural exposure of the African population, fHbp is conserved among African strains. A native outer membrane vesicle vaccine that expresses fHbp variants can potentially elicit protective antibodies against strains from all capsular groups that cause epidemics in the region
Serogroup B Invasive Meningococcal Disease in Older Adults Identified by Genomic Surveillance, England, 2022–2023
We report a cluster of serogroup B invasive meningococcal disease identified via genomic surveillance in older adults in England and describe the public health responses. Genomic surveillance is critical for supporting public health investigations and detecting the growing threat of serogroup B Neisseria meningitidis infections in older adults.
Meningococcal serogroup B-specific responses after vaccination with bivalent rLP2086: 4 year follow-up of a randomised, single-blind, placebo-controlled, phase 2 trial
Bivalent rLP2086 is a recombinant factor H binding protein-based vaccine approved in the USA for prevention of meningococcal serogroup B disease in 10–25-year-olds. We aimed to assess the persistence of bactericidal antibodies up to 4 years after a three-dose schedule of bivalent rLP2086. We did this randomised, single-blind, placebo-controlled, phase 2 trial at 25 sites in Australia, Poland, and Spain. In stage 1 of the study (February, 2009–May, 2010), healthy adolescents (aged 11–18 years) were randomly assigned, via an interactive voice and web-response system with computer-generated sequential random numbers, to receive either ascending doses of vaccine (60 μg, 120 μg, and 200 μg) or placebo at months 0, 2, and 6. Dispensing staff were not masked to group allocation, but allocation was concealed from principal investigators, participants and their guardians, and laboratory personnel. In stage 2 of the study (reported here), we enrolled healthy adolescents who had received three doses of 120 μg bivalent rLP2086 (the optimum dose level identified in stage 1) or saline. Immunogenicity was determined in serum bactericidal antibody assay using human complement (hSBA) by use of four meningococcal serogroup B test strains expressing vaccine-heterologous factor H binding protein variants: PMB80 (A22), PMB2001 (A56), PMB2948 (B24), and PMB2707 (B44). Immunogenicity in stage 2 was assessed at months 6, 12, 24, and 48 post-vaccination. We did analysis by intention to treat. This trial is registered as ClinicalTrials.gov number NCT00808028. Between March 17, 2010, and Feb 8, 2011, 170 participants who received 120 μg of bivalent rLP2086 and 80 participants who received placebo in stage 1 of the study were entered into stage 2; 210 participants completed stage 2 up to 48 months. 1 month after the third vaccination, 93% (n=139/149) to 100% (n=48/48) of vaccine recipients achieved protective hSBA titres equal to or greater than the lower limit of quantification to each test strain, compared with 0% (n=0/25) to 35% (n=8/23) of control recipients. Despite initial declines in seroprotective hSBA titres for all four test strains, for three test strains (A22, A56, and B24), more than 50% of bivalent rLP2086 recipients continued to achieve titres equal to or greater than the lower limit of quantification at months 6 (57% [n=93/163] to 89% [n=42/47]), 12 (54% [n=84/155] to 69% [n=33/48]), 24 (53% [n=26/49] to 54% [n=82/152]), and 48 (51% [n=24/47] to 59% [n=79/134]); corresponding values in the control group were 14% (n=11/80) to 22% (n=5/23) at month 6, 13% (n=10/78) to 29% (n=22/76) at month 12, 16% (n=12/74) to 36% (n=8/22) at month 24, and 24% (n=16/68) to 35% (n=8/23) at month 48. For test strain B44, hSBA titres equal to or greater than the lower limit of quantification were shown in 37% (n=18/49) of vaccine recipients at 6 months, in 29% (n=14/48) at 12 months, in 22% (n=11/49) at 24 months, and in 20% (n=10/49) at 48 months, compared with 0% (n=0/25) of control recipients at month 6, 4% (n=1/25) at months 12 and 24, and 12% (n=3/25) at month 48. Adverse events were reported in seven (4%) of 170 participants in the bivalent rLP2086 group and two (3%) of 80 participants in the control group; no event was deemed related to vaccine. After three doses of bivalent rLP2086, protective hSBA titres above the correlate of protection (≥1/4) were elicited up to 4 years in more than 50% of participants for three of four meningococcal serogroup B test strains representative of disease-causing meningococci expressing vaccine-heterologous antigens. Further studies will be needed to assess possible herd immunity effects with meningococcal serogroup B vaccines and the need for a booster dose to sustain individual protection against invasive meningococcal disease. Pfizer.
New Rapid Diagnostic Tests for Neisseria meningitidis Serogroups A, W135, C, and Y
Outbreaks of meningococcal meningitis (meningitis caused by Neisseria meningitidis) are a major public health concern in the African \"meningitis belt,\" which includes 21 countries from Senegal to Ethiopia. Of the several species that can cause meningitis, N. meningitidis is the most important cause of epidemics in this region. In choosing the appropriate vaccine, accurate N. meningitidis serogroup determination is key. To this end, we developed and evaluated two duplex rapid diagnostic tests (RDTs) for detecting N. meningitidis polysaccharide (PS) antigens of several important serogroups. Mouse monoclonal IgG antibodies against N. meningitidis PS A, W135/Y, Y, and C were used to develop two immunochromatography duplex RDTs, RDT1 (to detect serogroups A and W135/Y) and RDT2 (to detect serogroups C and Y). Standards for Reporting of Diagnostic Accuracy criteria were used to determine diagnostic accuracy of RDTs on reference strains and cerebrospinal fluid (CSF) samples using culture and PCR, respectively, as reference tests. The cutoffs were 10(5) cfu/ml for reference strains and 1 ng/ml for PS. Sensitivities and specificities were 100% for reference strains, and 93.8%-100% for CSF serogroups A, W135, and Y in CSF. For CSF serogroup A, the positive and negative likelihood ratios (+/- 95% confidence intervals [CIs]) were 31.867 (16.1-63.1) and 0.065 (0.04-0.104), respectively, and the diagnostic odds ratio (+/- 95% CI) was 492.9 (207.2-1,172.5). For CSF serogroups W135 and Y, the positive likelihood ratio was 159.6 (51.7-493.3) Both RDTs were equally reliable at 25 degrees C and 45 degrees C. These RDTs are important new bedside diagnostic tools for surveillance of meningococcus serogroups A and W135, the two serogroups that are responsible for major epidemics in Africa.