Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
476,061 result(s) for "Severe acute respiratory syndrome"
Sort by:
Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series
AbstractObjectiveTo study the clinical characteristics of patients in Zhejiang province, China, infected with the 2019 severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) responsible for coronavirus disease 2019 (covid-2019).DesignRetrospective case series.SettingSeven hospitals in Zhejiang province, China.Participants62 patients admitted to hospital with laboratory confirmed SARS-Cov-2 infection. Data were collected from 10 January 2020 to 26 January 2020.Main outcome measuresClinical data, collected using a standardised case report form, such as temperature, history of exposure, incubation period. If information was not clear, the working group in Hangzhou contacted the doctor responsible for treating the patient for clarification.ResultsOf the 62 patients studied (median age 41 years), only one was admitted to an intensive care unit, and no patients died during the study. According to research, none of the infected patients in Zhejiang province were ever exposed to the Huanan seafood market, the original source of the virus; all studied cases were infected by human to human transmission. The most common symptoms at onset of illness were fever in 48 (77%) patients, cough in 50 (81%), expectoration in 35 (56%), headache in 21 (34%), myalgia or fatigue in 32 (52%), diarrhoea in 3 (8%), and haemoptysis in 2 (3%). Only two patients (3%) developed shortness of breath on admission. The median time from exposure to onset of illness was 4 days (interquartile range 3-5 days), and from onset of symptoms to first hospital admission was 2 (1-4) days.ConclusionAs of early February 2020, compared with patients initially infected with SARS-Cov-2 in Wuhan, the symptoms of patients in Zhejiang province are relatively mild.
Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV
After the outbreak of the severe acute respiratory syndrome (SARS) in the world in 2003, human coronaviruses (HCoVs) have been reported as pathogens that cause severe symptoms in respiratory tract infections. Recently, a new emerged HCoV isolated from the respiratory epithelium of unexplained pneumonia patients in the Wuhan seafood market caused a major disease outbreak and has been named the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus causes acute lung symptoms, leading to a condition that has been named as “coronavirus disease 2019” (COVID-19). The emergence of SARS-CoV-2 and of SARS-CoV caused widespread fear and concern and has threatened global health security. There are some similarities and differences in the epidemiology and clinical features between these two viruses and diseases that are caused by these viruses. The goal of this work is to systematically review and compare between SARS-CoV and SARS-CoV-2 in the context of their virus incubation, originations, diagnosis and treatment methods, genomic and proteomic sequences, and pathogenic mechanisms.
Immunological considerations for COVID-19 vaccine strategies
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the most formidable challenge to humanity in a century. It is widely believed that prepandemic normalcy will never return until a safe and effective vaccine strategy becomes available and a global vaccination programme is implemented successfully. Here, we discuss the immunological principles that need to be taken into consideration in the development of COVID-19 vaccine strategies. On the basis of these principles, we examine the current COVID-19 vaccine candidates, their strengths and potential shortfalls, and make inferences about their chances of success. Finally, we discuss the scientific and practical challenges that will be faced in the process of developing a successful vaccine and the ways in which COVID-19 vaccine strategies may evolve over the next few years.This Review outlines the guiding immunological principles for the design of coronavirus disease 2019 (COVID-19) vaccine strategies and analyses the current COVID-19 vaccine landscape and the challenges ahead.
Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV
The emergence and global spread of SARS-CoV-2 has resulted in the urgent need for an in-depth understanding of molecular functions of viral proteins and their interactions with the host proteome. Several individual omics studies have extended our knowledge of COVID-19 pathophysiology 1 – 10 . Integration of such datasets to obtain a holistic view of virus–host interactions and to define the pathogenic properties of SARS-CoV-2 is limited by the heterogeneity of the experimental systems. Here we report a concurrent multi-omics study of SARS-CoV-2 and SARS-CoV. Using state-of-the-art proteomics, we profiled the interactomes of both viruses, as well as their influence on the transcriptome, proteome, ubiquitinome and phosphoproteome of a lung-derived human cell line. Projecting these data onto the global network of cellular interactions revealed crosstalk between the perturbations taking place upon infection with SARS-CoV-2 and SARS-CoV at different levels and enabled identification of distinct and common molecular mechanisms of these closely related coronaviruses. The TGF-β pathway, known for its involvement in tissue fibrosis, was specifically dysregulated by SARS-CoV-2 ORF8 and autophagy was specifically dysregulated by SARS-CoV-2 ORF3. The extensive dataset (available at https://covinet.innatelab.org ) highlights many hotspots that could be targeted by existing drugs and may be used to guide rational design of virus- and host-directed therapies, which we exemplify by identifying inhibitors of kinases and matrix metalloproteases with potent antiviral effects against SARS-CoV-2. Multi-omics profiling of effects of SARS-CoV-2 and SARS-CoV on A549, a lung-derived human cell line, produces a dataset enabling identification of common and virus-specific mechanisms of infection.
High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study
PurposeLittle evidence of increased thrombotic risk is available in COVID-19 patients. Our purpose was to assess thrombotic risk in severe forms of SARS-CoV-2 infection.MethodsAll patients referred to 4 intensive care units (ICUs) from two centers of a French tertiary hospital for acute respiratory distress syndrome (ARDS) due to COVID-19 between March 3rd and 31st 2020 were included. Medical history, symptoms, biological data and imaging were prospectively collected. Propensity score matching was performed to analyze the occurrence of thromboembolic events between non-COVID-19 ARDS and COVID-19 ARDS patients.Results150 COVID-19 patients were included (122 men, median age 63 [53; 71] years, SAPSII 49 [37; 64] points). Sixty-four clinically relevant thrombotic complications were diagnosed in 150 patients, mainly pulmonary embolisms (16.7%). 28/29 patients (96.6%) receiving continuous renal replacement therapy experienced circuit clotting. Three thrombotic occlusions (in 2 patients) of centrifugal pump occurred in 12 patients (8%) supported by ECMO. Most patients (> 95%) had elevated D-dimer and fibrinogen. No patient developed disseminated intravascular coagulation. Von Willebrand (vWF) activity, vWF antigen and FVIII were considerably increased, and 50/57 tested patients (87.7%) had positive lupus anticoagulant. Comparison with non-COVID-19 ARDS patients (n = 145) confirmed that COVID-19 ARDS patients (n = 77) developed significantly more thrombotic complications, mainly pulmonary embolisms (11.7 vs. 2.1%, p < 0.008). Coagulation parameters significantly differed between the two groups.ConclusionDespite anticoagulation, a high number of patients with ARDS secondary to COVID-19 developed life-threatening thrombotic complications. Higher anticoagulation targets than in usual critically ill patients should therefore probably be suggested.
SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells
The scientific community faces an unexpected and urgent challenge related to the SARS-CoV-2 pandemic and is investigating the role of receptors involved in entry of this virus into cells as well as pathomechanisms leading to a cytokine “storm,” which in many cases ends in severe acute respiratory syndrome, fulminant myocarditis and kidney injury. An important question is if it may also damage hematopoietic stem progenitor cells?
A new coronavirus associated with human respiratory disease in China
Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health 1 – 3 . Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing 4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae , which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China 5 . This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans. Phylogenetic and metagenomic analyses of the complete viral genome of a new coronavirus from the family Coronaviridae reveal that the virus is closely related to a group of SARS-like coronaviruses found in bats in China.
The spike protein of SARS-CoV — a target for vaccine and therapeutic development
Key Points This Review provides an overview on the spike (S) protein of severe acute respiratory syndrome-coronavirus (SARS-CoV) as a target for the development of vaccines and therapeutics for the prevention and treatment of SARS. SARS is a newly emerging infectious disease, caused by SARS-CoV, a novel coronavirus that caused a global outbreak of SARS. SARS-CoV S protein mediates binding of the virus with its receptor angiotensin-converting enzyme 2 and promotes the fusion between the viral and host cell membranes and virus entry into the host cell. SARS-CoV S protein induces humoral and cellular immune responses against SARS-CoV. SARS S protein is the target of new SARS vaccines. These vaccines are based on SARS-CoV full-length S protein and its receptor-binding domain, including DNA-, viral vector- and subunit-based vaccines Peptides, antibodies, organic compounds and short interfering RNAs are additional anti-SARS-CoV therapeutics that target the S protein. The work on SARS-CoV S protein-based vaccines and drugs will be useful as a model for the development of prophylactic strategies and therapies against other viruses with class I fusion proteins that can cause emerging infectious diseases. The outbreaks of severe acute respiratory syndrome (SARS) between 2002 and 2004 killed hundreds of people. Vaccines against the SARS coronavirus (SARS-CoV) could protect the population during future outbreaks. In this Review, Shibo Jiang and colleagues describe such vaccines, as well as other therapeutics, based on the SARS-CoV spike protein. Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease caused by a novel coronavirus, SARS-coronavirus (SARS-CoV). The SARS-CoV spike (S) protein is composed of two subunits; the S1 subunit contains a receptor-binding domain that engages with the host cell receptor angiotensin-converting enzyme 2 and the S2 subunit mediates fusion between the viral and host cell membranes. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity, during infection with SARS-CoV. In this Review, we highlight recent advances in the development of vaccines and therapeutics based on the S protein.
Persistence of Severe Acute Respiratory Syndrome Coronavirus 2 in Aerosol Suspensions
We aerosolized severe acute respiratory syndrome coronavirus 2 and determined that its dynamic aerosol efficiency surpassed those of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome. Although we performed experiment only once across several laboratories, our findings suggest retained infectivity and virion integrity for up to 16 hours in respirable-sized aerosols.
SARS and MERS: recent insights into emerging coronaviruses
Key Points Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that can cause severe respiratory disease in humans. Although disease progression is fairly similar for SARS and MERS, the case fatality rate of MERS is much higher than that of SARS. Comorbidities have an important role in SARS and MERS. Several risk factors are associated with progression to acute respiratory distress syndrome (ARDS) in SARS and MERS cases, especially advanced age and male sex. For MERS, additional risk factors that are associated with severe disease include chronic conditions such as diabetes mellitus, hypertension, cancer, renal and lung disease, and co-infections. Although the ancestors of SARS-CoV and MERS-CoV probably circulate in bats, zoonotic transmission of SARS-CoV required an incidental amplifying host. Dromedary camels are the MERS-CoV reservoir from which zoonotic transmission occurs; serological evidence indicates that MERS-CoV-like viruses have been circulating in dromedary camels for at least three decades. Human-to-human transmission of SARS-CoV and MERS-CoV occurs mainly in health care settings. Patients do not shed large amounts of virus until well after the onset of symptoms, when patients are most probably already seeking medical care. Analysis of hospital surfaces after the treatment of patients with MERS showed the ubiquitous presence of infectious virus. Our understanding of the pathogenesis of SARS-CoV and MERS-CoV is still incomplete, but the combination of viral replication in the lower respiratory tract and an aberrant immune response is thought to have a crucial role in the severity of both syndromes. The severity of the diseases that are caused by emerging coronaviruses highlights the need to develop effective therapeutic measures against these viruses. Although several treatments for SARS and MERS (based on inhibition of viral replication with drugs or neutralizing antibodies, or on dampening the host response) have been identified in animal models and in vitro studies, efficacy data from human clinical trials are urgently required. Insights into coronavirus emergence, replication and pathogenesis gained from the SARS and MERS outbreaks have guided the development of preventive and therapeutic measures. In this Review, Munster and colleagues highlight recent achievements and areas that need to be addressed to combat novel coronaviruses. The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The continuing introductions of MERS-CoV from dromedary camels, the subsequent travel-related viral spread, the unprecedented nosocomial outbreaks and the high case-fatality rates highlight the need for prophylactic and therapeutic measures. Scientific advancements since the 2002–2003 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic allowed for rapid progress in our understanding of the epidemiology and pathogenesis of MERS-CoV and the development of therapeutics. In this Review, we detail our present understanding of the transmission and pathogenesis of SARS-CoV and MERS-CoV, and discuss the current state of development of measures to combat emerging coronaviruses.