Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
42,248 result(s) for "Shear Strength"
Sort by:
Triaxial testing of soils
Triaxial Testing of Soils explains how to carry out triaxial tests to demonstrate the effects of soil behaviour on engineering designs. An authoritative and comprehensive manual, it reflects current best practice and instrumentation.References are made throughout to easily accessible articles in the literature and the book?s focus is on how to obtain high quality experimental results.
Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil
The main objective of this study is to evaluate and compare the performance of different machine learning (ML) algorithms, namely, Artificial Neural Network (ANN), Extreme Learning Machine (ELM), and Boosting Trees (Boosted) algorithms, considering the influence of various training to testing ratios in predicting the soil shear strength, one of the most critical geotechnical engineering properties in civil engineering design and construction. For this aim, a database of 538 soil samples collected from the Long Phu 1 power plant project, Vietnam, was utilized to generate the datasets for the modeling process. Different ratios (i.e., 10/90, 20/80, 30/70, 40/60, 50/50, 60/40, 70/30, 80/20, and 90/10) were used to divide the datasets into the training and testing datasets for the performance assessment of models. Popular statistical indicators, such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Correlation Coefficient (R), were employed to evaluate the predictive capability of the models under different training and testing ratios. Besides, Monte Carlo simulation was simultaneously carried out to evaluate the performance of the proposed models, taking into account the random sampling effect. The results showed that although all three ML models performed well, the ANN was the most accurate and statistically stable model after 1000 Monte Carlo simulations (Mean R = 0.9348) compared with other models such as Boosted (Mean R = 0.9192) and ELM (Mean R = 0.8703). Investigation on the performance of the models showed that the predictive capability of the ML models was greatly affected by the training/testing ratios, where the 70/30 one presented the best performance of the models. Concisely, the results presented herein showed an effective manner in selecting the appropriate ratios of datasets and the best ML model to predict the soil shear strength accurately, which would be helpful in the design and engineering phases of construction projects.
Experimental Study on the Shear Strength and Failure Mechanism of Cemented Soil–Concrete Interface
Cement is always used in underground construction to reinforce and improve soft clay, resulting in the formation of a cemented soil–concrete interface. It is of great importance to study interface shear strength and failure mechanisms. So, in order to figure out the failure mechanism and characteristics of a cemented soil–concrete interface, a series of large-scale shear tests of a cemented soil–concrete interface, and corresponding unconfined compressive tests and direct shear tests of cemented soil, were carried out specifically under different impact factors. A kind of bounding strength was observed during large-scale interface shearing. Resultantly, three stages of the shear failure process of the cemented soil–concrete interface are proposed, and bonding strength, peak (shear) strength and residual strength are pointed out, respectively, in interface shear stress–strain development. Based on the analysis results of the impact factors, the shear strength of the cemented soil–concrete interface increases with age, the cement mixing ratio and normal stress, and decreases with the water–cement ratio. Additionally, the interface shear strength grows much more rapidly after 14 d to 28 d compared to the early stage (1~7 d). Additionally, the shear strength of the cemented soil–concrete interface is positively related to unconfined compressive strength and shear strength. However, the trends of the bonding strength and unconfined compressive strength or shear strength are much closer than those of the peak and residual strength. This is considered to be related to the cementation of cement hydration products and probably the particle arrangement of the interface. Particularly, the cemented soil–concrete interface shear strength is always smaller than the cemented soil’s own shear strength at any age.
A Comparative Study on the Shear Behavior of UHPC Beams with Macro Hooked-End Steel Fibers and PVA Fibers
Structural members made of ultra-high-performance concrete (UHPC) have been attractive to engineers and researchers due to their superior mechanical properties and durability. However, existing studies were focused on the behavior of UHPC members reinforced with micro straight steel fibers at a volume fraction between 1 and 3%. There is a lack of studies on the influence of different types and amounts of fibers on the shear behavior of UHPC structural members. The objective of the study was to experimentally investigate the shear behavior of UHPC beams with macro hooked-end steel (MHS) fibers and polyvinyl alcohol (PVA) fibers, which are two of the most used fibers for high-performance fiber-reinforced cementitious composites. The shear behavior of ten large-scale non-prestressed UHPC beams was studied. The experimental parameters included the shear span-to-effective depth ratio, the fiber volume fraction, and the type of fibers. It was found that both MHS fibers and PVA fibers were effective in enhancing the shear performance of the UHPC beams whether the shear transfer mechanism was governed by arch action or beam action. Moreover, the measurement results of the average crack spacing imply the distinct difference in the fiber bridging effects of the MHS fibers and PVA fibers in the UHPC beams.
Experimental study on shear mechanical properties of concrete joints under different unloading stress paths
In order to study the shear mechanical properties of rock joint under different unloading stress paths, the RDS-200 rock joint shear test system was used to carry out direct shear tests on concrete joint specimens with five different morphologies under the CNL path and different unloading stress paths. The unloading stress paths include unloading normal load and maintaining constant shear load (UNLCSL), unloading normal load and unloading shear load (UNLUSL), unloading normal load and increasing shear load (UNLISL). The results show that the peak shear strength, cohesion, internal friction angle, pre-peak shear stiffness and residual shear strength of concrete joints under CNL path increases with the increasing JRC and normal stress. Under the UNLCSL path, under the same initial shear stress τ 1 , instability normal stress σ i decreases with the increasing JRC , and normal stress unloading amount Δσ n increases with the increasing JRC . Under the same JRC , σ i increases with the increase of τ 1 , and Δσ n decreases with the increasing τ 1 . Under the same JRC and σ i , τ i is significantly smaller under the UNLCSL path than the CNL path. Under the same JRC , the cohesion under the UNLCSL path is less than the CNL path, and the internal friction angle is higher than that the CNL path. Under the same JRC and σ i , τ i is the largest under the path of CNL and UNLISL, followed by the UNLCSL path, and τ i under the UNLUSL path is the smallest. Compared with the CNL path, the variation range of the specimen internal friction angle is within 3% while the average decrease percentage of the specimen cohesion reaches 37.6% under the UNLCSL path, UNLISL, and UNLUSL. Therefore, it can be inferred that the decrease in cohesion caused by normal unloading is the main reason for the decrease in joint instability shear strength. After introducing the correction coefficient k of cohesion to modify the Mohr-Coulomb criterion, the maximum average relative error after correction is only 3.5%, which is significantly improved compared with the maximum average relative error of 56.9% before correction. The research conclusions can provide some reference for the accurate estimation of shear bearing capacity of rock joints under different unloading stress paths, which is of great significance to the stability evaluation and disaster prevention of rock mass engineering.
Cyclic behavior of interface shear between carbonate sand and steel
The shear properties of carbonate sand and structure interface are of significance for the engineering construction. The parallel paper (Rui et al. in Acta Geotech, 2020) focuses on the monotonic behavior of the interface between carbonate sand and steel. In this paper, by a series of shear tests on the interface between carbonate sand and steel, the evolutions of interface strength during cyclic interface shear were investigated. Further, the influences of cyclic amplitude, particle size, surface roughness and normal stress on the sand–steel interface shear behavior were discussed. Using a kind of transparent ring, the particle movements near the interface were observed to explain the mechanism during cyclic interface shear. The experimental results show that the shear zone appears near the interface, and is mainly composed of crushed fine particles and original particles. With lower steel roughness condition, the volume contraction is dominant in cyclic interface shear, while the dilation and contraction occur alternatively for higher roughness, which leads to higher interface shear strength. Compared with monotonic shear, the thickness of shear zone after cyclic shear is relatively small. Cyclic interface shear can lead to more fine particles, but less is embedded into the interface. It is found that under cyclic shearing, the interaction between particles and steel is enhanced, which is the main factor for promoting the interface strength, so interface strength in cyclic shear is higher than that in monotonic shear.
Residual-state creep of clastic soil in a reactivated slow-moving landslide in the Three Gorges Reservoir Region, China
We study the creep properties of clastic soil in residual state. The intact samples are taken from a reactivated slow-moving landslide in the Three Gorges Reservoir Region, China. Firstly, the patterns of the landslide movement are analysed based on recent monitoring data, which indicate that the soil within the shear zone is undergoing two deformation processes: a creep phase, characterised by different creep rates, and a dormant phase. We then study the creep behaviour of the soil samples through a series of ring shear creep tests under various shear stress conditions. The creep response depends strongly on the ratio of the shear stress to the residual strength, and the normal effective stress, whereas the creep rate decreases due to strength regain. The long-term strength of the clastic soil is close to the residual strength. Therefore, the residual strength obtained from conventional shear test, which is less time consuming than creep test, can be used in long-term stability analyses of creeping landslides.
Impact Response and Damage Tolerance of Hybrid Glass/Kevlar-Fibre Epoxy Structural Composites
The present study is aimed at investigating the effect of hybridisation on Kevlar/E-Glass based epoxy composite laminate structures. Composites with 3 mm thickness and 16 layers of fibre (14 layers of E-glass centred and 2 outer layers of Kevlar) were fabricated using compression moulding technique. The fibre orientation of the Kevlar layers had 3 variations (0, 45 and 60°), whereas the E-glass fibre layers were maintained at 0° orientation. Tensile, flexural, impact (Charpy and Izod), interlaminar shear strength and ballistic impact tests were conducted. The ballistic test was performed using a gas gun with spherical hard body projectiles at the projectile velocity of 170 m/s. The pre- and post-impact velocities of the projectiles were measured using a high-speed camera. The energy absorbed by the composite laminates was further reported during the ballistic test, and a computerised tomographic scan was used to analyse the impact damage. The composites with 45° fibre orientation of Kevlar fibres showed better tensile strength, flexural strength, Charpy impact strength, and energy absorption. The energy absorbed by the composites with 45° fibre orientation was 58.68 J, which was 14% and 22% higher than the 0° and 60° oriented composites.
Accelerated Aging Behavior in Alkaline Environments of GFRP Reinforcing Bars and Their Bond with Concrete
This study investigates the durability of glass fiber-reinforced polymer (GFRP) reinforcing bars (rebars) and their bond in concrete. Accelerated aging tests were first conducted on bare rebars that were either subjected to direct immersion in an alkaline solution or previously embedded in concrete before immersion in the solution (indirect immersion). Accelerated aging was conducted at different temperatures of the solution (20 °C, 40 °C and 60 °C) and for various periods up to 240 days. Residual tensile properties were determined for rebars subjected to direct immersion and served as input data of a predictive Arrhenius model. A large decrease in the residual tensile strength assigned to the alkali-attack of glass fibers was extrapolated in the long term, suggesting that direct immersion is very severe compared to actual service conditions. Short-beam tests were also performed on rebars conditioned under direct/indirect immersion conditions, but did not reveal any significant evolution of the interlaminar shear strength (ILSS). In a second part, bond tests were performed on pull-out specimens after immersion in the alkaline solution at different temperatures, in order to assess possible changes in the concrete/GFRP bond properties over aging. Results showed antagonistic effects, with an initial increase in bond strength assigned to a confinement effect of the rebar resulting from changes in the concrete properties over aging, followed by a decreasing trend possibly resulting from interfacial degradation. Complementary characterizations by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were also carried out to evaluate the effects of aging on the physical/microstructural properties of GFRPs.
Effects of mercerization and fiber sizing of coir fiber for utilization in polypropylene composites
The use of natural fibers as an alternative to synthetic fibers for reinforcing composites is increasing. However, the poor interfacial adhesion between natural fibers and polymer matrices limits their applications. Several approaches have been considered to improve fiber-matrix adhesion via chemical and/or physical treatment. However, the effectiveness of these treatments varies based on the type of fiber, its source, and its composition. Thus, it is imperative to understand the effectiveness of treatment conditions. In this study, we investigated the influence of alkali treatment and fiber sizing on the chemical, thermal, morphological, and mechanical properties of coir fibers and the interface between coir fiber and polypropylene matrix. It was found that using a 5 wt% sodium hydroxide solution for 6 h at room temperature was the optimal treatment condition that led to an improvement in tensile strength by 58%, tensile modulus by 71%, and elongation at break by 37% compared to untreated fibers, and an increment in interfacial shear strength (IFSS) between coir fibers and polypropylene matrix by 32%. The alkali treatment removed the fiber surface impurities, made the fiber surface rough, and enhanced the fiber crystallinity. Sizing of the alkali-treated fiber led to an improvement in IFSS by 87% with no modification of the fiber’s mechanical properties.