Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
166 result(s) for "Sialic Acid Binding Ig-like Lectin 1"
Sort by:
Marginal zone CD169+macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance
Tolerance to apoptotic cells is essential to prevent inflammatory pathology. Though innate responses are critical for immune suppression, our understanding of early innate immunity driven by apoptosis is lacking. Herein we report apoptotic cells induce expression of the chemokine CCL22 in splenic metallophillic macrophages, which is critical for tolerance. Systemic challenge with apoptotic cells induced rapid production of CCL22 in CD169+ (metallophillic) macrophages, resulting in accumulation and activation of FoxP3+ Tregs and CD11c+ dendritic cells, an effect that could be inhibited by antagonizing CCL22-driven chemotaxis. This mechanism was essential for suppression after apoptotic cell challenge, because neutralizing CCL22 or its receptor, reducing Treg numbers, or blocking effector mechanisms abrogated splenic TGF-β and IL-10 induction; this promoted a shift to proinflammatory cytokines associated with a failure to suppress T cells. Similarly, CCR4 inhibition blocked long-term, apoptotic cell-induced tolerance to allografts. Finally, CCR4 inhibition resulted in a systemic breakdown of tolerance to self after apoptotic cell injection with rapid increases in anti-dsDNA IgG and immune complex deposition. Thus, the data demonstrate CCL22-dependent chemotaxis is a key early innate response required for apoptotic cell-induced suppression, implicating a previously unknown mechanism of macrophage-dependent coordination of early events leading to stable tolerance.
Low Dose of Cyanidin-3-O-Glucoside Alleviated Dextran Sulfate Sodium–Induced Colitis, Mediated by CD169+ Macrophage Pathway
Inflammatory bowel disease (IBD) is a chronic disease of the intestinal tract in which excessive activation of inflammatory response is correlated. Cyanidin-3-O-glucoside (C3G) is a powerful anti-inflammatory agent, widely existing in fruits and vegetables. However, the role of C3G has rarely been investigated in dextran sulfate sodium (DSS)-induced colitis. In an attempt to elucidate the possible mechanism of IBD and develop new efficient therapeutic methods for colitis, we evaluated the effects of C3G on DSS-induced colitis. DSS-induced colitic C57BL/6 mice were intraperitoneal injected with 1ug C3G or phosphate buffer every 2 days, a total of 3 times; the changes in macrophages and regular T cells were analyzed by flow cytometry and immunofluorescence. Cytokines and chemokines were measured by real-time quantitative polymerase chain reaction. The results showed that C3G treatment did not cause changes in body weight and colon length as much as those of DSS-treated mice only. Cytokine expression levels such as interleukin (IL)- 6, IL-1β, IL-18, tumor necrosis factor α, interferon γ (IFN γ) in colons and mesenteric lymph nodes (mLNs) from C3G-treated mice were lower than those from colitic mice. Meanwhile, C3G injection inhibited the decrease in CCL22 levels and Tregs induction in colitic mice. Furthermore, the activation of macrophages by LPS and increase of CD169+ cells induced by type I IFN could be inhibited by C3G directly in vitro. The study is the first to demonstrate strong effects of C3G to alleviate DSS-induced colonic damage in mice. The effect of C3G on DSS-induced colitis clearly showed a decrease of CD169+ macrophages in both the colon and mLNs. An increase of CD169+ cells induced by type I IFN could be inhibited by C3G. All these data suggest that the role of C3G in colitic inflammation was mediated at least partially by CD169+ cells and the type I IFN pathway.
CD169+ Macrophages Mediate the Immune Response of Allergic Rhinitis Through the Keap1/Nrf2/HO‐1 Axis
CD169+ macrophages are a newly defined macrophage subpopulation that can recognize and bind with other cells through related ligands, playing an essential role in antigen presentation and immune tolerance. However, its role in Allergic Rhinitis (AR) is still unclear. To investigate the characteristics of CD169+ macrophages in AR, this work first detects their expression patterns in the nasal mucosa of clinical patients. These results show a significant increase in CD169+ macrophages in the nasal mucosa of patients with AR. Subsequently, this work establishes an animal AR model using CD169 transgenic mice and compared the advantages of the two models. Moreover, this work also demonstrates the effects of CD169 knockout on eosinophils, Th cells, Treg cells, and the migration of dendritic cells (DCs). In addition, this metabolomic data shows that CD169+ macrophages can upregulate alanine production and increase reactive oxygen species (ROS) levels. This process may be mediated through the Keap1/Nrf2/HO‐1 signaling pathway. In addition, this work also finds that SLC38A2 plays an essential role in the process of CD169+ macrophages promoting alanine uptake by DCs. This study confirms that CD169+ macrophages can upregulate their internal alanine production and increase ROS levels through the Keap1/Nrf2/HO‐1 axis, playing an irreplaceable role in AR. This study demonstrated that CD169+ macrophages can up‐regulate their internal alanine production and increase ROS levels through the Keap1/Nrf2/HO‐1 axis. These substances are then released into the nasal mucosal microenvironment, ultimately promoting alanine uptake by dendritic cells through SLC38A2. This regulation of dendritic cell migration and maturation contributes to the cascade of allergic rhinitis.
Anti-Siglec-1 antibodies block Ebola viral uptake and decrease cytoplasmic viral entry
Several Ebola viruses cause outbreaks of lethal haemorrhagic fever in humans, but developing therapies tackle only Zaire Ebola virus. Dendritic cells (DCs) are targets of this infection in vivo. Here, we found that Ebola virus entry into activated DCs requires the sialic acid-binding Ig-like lectin 1 (Siglec-1/CD169), which recognizes sialylated gangliosides anchored to viral membranes. Blockage of the Siglec-1 receptor by anti-Siglec-1 monoclonal antibodies halted Ebola viral uptake and cytoplasmic entry, offering cross-protection against other ganglioside-containing viruses such as human immunodeficiency virus type 1. The sialic acid-binding Ig-like lectin 1 (Siglec-1, also known as CD169) plays a more prominent role than the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-Grabbing non-integrin in mediating Ebola virus entry into activated dendritic cells, and anti-Siglec-1 monoclonal antibodies can antagonize this process.
SCS macrophages suppress melanoma by restricting tumor-derived vesicle–B cell interactions
Tumor-derived extracellular vesicles (tEVs) are important signals in tumor–host cell communication, yet it remains unclear how endogenously produced tEVs affect the host in different areas of the body. We combined imaging and genetic analysis to track melanoma-derived vesicles at organismal, cellular, and molecular scales to show that endogenous tEVs efficiently disseminate via lymphatics and preferentially bind subcapsular sinus (SCS) CD169⁺ macrophages in tumor-draining lymph nodes (tdLNs) in mice and humans. The CD169⁺ macrophage layer physically blocks tEV dissemination but is undermined during tumor progression and by therapeutic agents. A disrupted SCS macrophage barrier enables tEVs to enter the lymph node cortex, interact with B cells, and foster tumor-promoting humoral immunity. Thus, CD169⁺ macrophages may act as tumor suppressors by containing tEV spread and ensuing cancer-enhancing immunity.
Intestinal CD169+ macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytes
Lamina propria (LP) macrophages are constantly exposed to commensal bacteria, and are refractory to those antigens in an interleukin (IL)-10-dependent fashion. However, the mechanisms that discriminate hazardous invasion by bacteria from peaceful co-existence with them remain elusive. Here we show that CD169 + macrophages reside not at the villus tip, but at the bottom-end of the LP microenvironment. Following mucosal injury, the CD169 + macrophages recruit inflammatory monocytes by secreting CCL8. Selective depletion of CD169 + macrophages or administration of neutralizing anti-CCL8 antibody ameliorates the symptoms of experimentally induced colitis in mice. Collectively, we identify an LP-resident macrophage subset that links mucosal damage and inflammatory monocyte recruitment. Our results suggest that CD169 + macrophage-derived CCL8 serves as an emergency alert for the collapse of barrier defence, and is a promising target for the suppression of mucosal injury. Macrophages and dendritic cells residing in the lamina propria are involved in controlling mucosal immune balance. Here, the authors identify CD169 + macrophages as contributors to the inflammation of DSS colitis through their role in mediating the recruitment of monocytes by secreting the cytokine CCL8.
CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress
Chow et al . report a crucial role for macrophages in erythroblast development in mice. Under conditions that induce new red blood cell formation, macrophage depletion impaired red blood cell recovery. Conversely, macrophage depletion normalized red blood cell counts in a mouse model of polycythemia vera, pointing to a potential new therapeutic strategy for this disease. Findings similar to these are reported in an accompanying paper by Ramos et al . A role for macrophages in erythropoiesis was suggested several decades ago when erythroblastic islands in the bone marrow, composed of a central macrophage surrounded by developing erythroblasts, were described. However, the in vivo role of macrophages in erythropoiesis under homeostatic conditions or in disease remains unclear. We found that specific depletion of CD169 + macrophages markedly reduced the number of erythroblasts in the bone marrow but did not result in overt anemia under homeostatic conditions, probably because of concomitant alterations in red blood cell clearance. However, CD169 + macrophage depletion significantly impaired erythropoietic recovery from hemolytic anemia, acute blood loss and myeloablation. Furthermore, macrophage depletion normalized the erythroid compartment in a JAK2 V617F -driven mouse model of polycythemia vera, suggesting that erythropoiesis in polycythemia vera remains under the control of macrophages in the bone marrow and splenic microenvironments. These results indicate that CD169 + macrophages promote late erythroid maturation and that modulation of the macrophage compartment may be a new strategy to treat erythropoietic disorders.
Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection
Dendritic cells can capture and transfer retroviruses in vitro across synaptic cell-cell contacts to uninfected cells, a process called trans-infection. Whether trans-infection contributes to retroviral spread in vivo remains unknown. Here, we visualize how retroviruses disseminate in secondary lymphoid tissues of living mice. We demonstrate that murine leukemia virus (MLV) and human immunodeficiency virus (HIV) are first captured by sinus-lining macrophages. CD169/Siglec-1, an I-type lectin that recognizes gangliosides, captures the virus. MLV-laden macrophages then form long-lived synaptic contacts to trans-infect B-1 cells. Infected B-1 cells subsequently migrate into the lymph node to spread the infection through virological synapses. Robust infection in lymph nodes and spleen requires CD169, suggesting that a combination of fluid-based movement followed by CD169-dependent trans-infection can contribute to viral spread.
Antigen Delivery to Macrophages Using Liposomal Nanoparticles Targeting Sialoadhesin/CD169
Sialoadhesin (Sn, Siglec-1, CD169) is a member of the sialic acid binding Ig-like lectin (siglec) family expressed on macrophages. Its macrophage specific expression makes it an attractive target for delivering antigens to tissue macrophages via Sn-mediated endocytosis. Here we describe a novel approach for delivering antigens to macrophages using liposomal nanoparticles displaying high affinity glycan ligands of Sn. The Sn-targeted liposomes selectively bind to and are internalized by Sn-expressing cells, and accumulate intracellularly over time. Our results show that ligand decorated liposomes are specific for Sn, since they are taken up by bone marrow derived macrophages that are derived from wild type but not Sn(-/-) mice. Importantly, the Sn-targeted liposomes dramatically enhance the delivery of antigens to macrophages for presentation to and proliferation of antigen-specific T cells. Together, these data provide insights into the potential of cell-specific targeting and delivery of antigens to intracellular organelles of macrophages using Sn-ligand decorated liposomal nanoparticles.
CD169‐positive sinus macrophages in the lymph nodes determine bladder cancer prognosis
CD169+ macrophages are suggested to play a pivotal role in establishing anti‐tumor immunity. They capture dead tumor cell‐associated antigens and transfer their information to lymphocsytes, including CD8+ T cells, which is important for successful tumor suppression. This study aimed to determine the prognostic significance of CD169+ macrophages residing in the tumor‐draining lymph nodes from cases of bladder cancer. In this retrospective study, 44 bladder cancer patients who received radical cystectomy were examined. The abundance of CD169+ macrophages in the regional lymph nodes and the number of CD8+ T cells in the primary tumor were investigated by immunohistochemistry. A CD169 score was calculated based on the intensity of CD169 staining and the proportion of CD169+ macrophages, and the scores were compared to the patients’ clinicopathological parameters. A high CD169 score was significantly associated with low T stage and with a high number of CD8+ T cells infiltrating into the tumor. The group with high CD169 expression had significantly longer cancer‐specific survival than the group with low CD169 expression (5‐year cancer‐specific survival rate: 83.3% vs 31.3%). In a multivariate analysis, the CD169 score was identified as a strong and independent favorable prognostic factor for cancer‐specific survival. Our findings suggest that CD169+ macrophages in the lymph nodes enhance anti‐tumor immunity by expanding CD8+ T cells in bladder cancer. The CD169 score may serve as a novel marker for the evaluation of bladder cancer prognosis. Dead tumor cells are delivered to draining lymph nodes via lymphatic vessel. CD169+ macrophages in the regional lymph nodes capture dead tumor cells and present the tumor antigen to CD8+ T cells. The activated CD8+ T cells travel to the bladder tumor and suppress their proliferation.