Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
213,934 result(s) for "Signal processing."
Sort by:
A wavelet tour of signal processing : the sparse way
Mallat's book is the undisputed reference in this field - it is the only one that covers the essential material in such breadth and depth. - Laurent Demanet, Stanford UniversityThe new edition of this classic book gives all the major concepts, techniques and applications of sparse representation, reflecting the key role the subject plays in today's signal processing. The book clearly presents the standard representations with Fourier, wavelet and time-frequency transforms, and the construction of orthogonal bases with fast algorithms. The central concept of sparsity is explained and applied to signal compression, noise reduction, and inverse problems, while coverage is given to sparse representations in redundant dictionaries, super-resolution and compressive sensing applications.Features:* Balances presentation of the mathematics with applications to signal processing* Algorithms and numerical examples are implemented in WaveLab, a MATLAB toolbox* Companion website for instructors and selected solutions and code available for studentsNew in this edition* Sparse signal representations in dictionaries* Compressive sensing, super-resolution and source separation* Geometric image processing with curvelets and bandlets* Wavelets for computer graphics with lifting on surfaces* Time-frequency audio processing and denoising* Image compression with JPEG-2000* New and updated exercisesA Wavelet Tour of Signal Processing: The Sparse Way, third edition, is an invaluable resource for researchers and R&D engineers wishing to apply the theory in fields such as image processing, video processing and compression, bio-sensing, medical imaging, machine vision and communications engineering.Stephane Mallat is Professor in Applied Mathematics at École Polytechnique, Paris, France. From 1986 to 1996 he was a Professor at the Courant Institute of Mathematical Sciences at New York University, and between 2001 and 2007, he co-founded and became CEO of an image processing semiconductor company.Companion website: A Numerical Tour of Signal Processing Includes all the latest developments since the book was published in 1999, including itsapplication to JPEG 2000 and MPEG-4Algorithms and numerical examples are implemented in Wavelab, a MATLAB toolboxBalances presentation of the mathematics with applications to signal processing
Signal Processing with Python
This book explores the domain of signal processing using Python, with the help of working examples and accompanying code and introduces the concepts of Python programming via signal processing with numerous hands-on examples and code snippets.
A survey of Monte Carlo methods for parameter estimation
Statistical signal processing applications usually require the estimation of some parameters of interest given a set of observed data. These estimates are typically obtained either by solving a multi-variate optimization problem, as in the maximum likelihood (ML) or maximum a posteriori (MAP) estimators, or by performing a multi-dimensional integration, as in the minimum mean squared error (MMSE) estimators. Unfortunately, analytical expressions for these estimators cannot be found in most real-world applications, and the Monte Carlo (MC) methodology is one feasible approach. MC methods proceed by drawing random samples, either from the desired distribution or from a simpler one, and using them to compute consistent estimators. The most important families of MC algorithms are the Markov chain MC (MCMC) and importance sampling (IS). On the one hand, MCMC methods draw samples from a proposal density, building then an ergodic Markov chain whose stationary distribution is the desired distribution by accepting or rejecting those candidate samples as the new state of the chain. On the other hand, IS techniques draw samples from a simple proposal density and then assign them suitable weights that measure their quality in some appropriate way. In this paper, we perform a thorough review of MC methods for the estimation of static parameters in signal processing applications. A historical note on the development of MC schemes is also provided, followed by the basic MC method and a brief description of the rejection sampling (RS) algorithm, as well as three sections describing many of the most relevant MCMC and IS algorithms, and their combined use. Finally, five numerical examples (including the estimation of the parameters of a chaotic system, a localization problem in wireless sensor networks and a spectral analysis application) are provided in order to demonstrate the performance of the described approaches.
Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review
The electrodermal activity (EDA) signal is an electrical manifestation of the sympathetic innervation of the sweat glands. EDA has a history in psychophysiological (including emotional or cognitive stress) research since 1879, but it was not until recent years that researchers began using EDA for pathophysiological applications like the assessment of fatigue, pain, sleepiness, exercise recovery, diagnosis of epilepsy, neuropathies, depression, and so forth. The advent of new devices and applications for EDA has increased the development of novel signal processing techniques, creating a growing pool of measures derived mathematically from the EDA. For many years, simply computing the mean of EDA values over a period was used to assess arousal. Much later, researchers found that EDA contains information not only in the slow changes (tonic component) that the mean value represents, but also in the rapid or phasic changes of the signal. The techniques that have ensued have intended to provide a more sophisticated analysis of EDA, beyond the traditional tonic/phasic decomposition of the signal. With many researchers from the social sciences, engineering, medicine, and other areas recently working with EDA, it is timely to summarize and review the recent developments and provide an updated and synthesized framework for all researchers interested in incorporating EDA into their research.
Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals
Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists.