Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
558
result(s) for
"Silicates Environmental aspects."
Sort by:
Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere
by
Richard, Laurent
,
Réfrégiers, Matthieu
,
Ménez, Bénédicte
in
704/445/209
,
704/445/3929
,
704/445/431
2018
Abiotic hydrocarbons and carboxylic acids are known to be formed on Earth, notably during the hydrothermal alteration of mantle rocks. Although the abiotic formation of amino acids has been predicted both from experimental studies and thermodynamic calculations, its occurrence has not been demonstrated in terrestrial settings. Here, using a multimodal approach that combines high-resolution imaging techniques, we obtain evidence for the occurrence of aromatic amino acids formed abiotically and subsequently preserved at depth beneath the Atlantis Massif (Mid-Atlantic Ridge). These aromatic amino acids may have been formed through Friedel–Crafts reactions catalysed by an iron-rich saponite clay during a late alteration stage of the massif serpentinites. Demonstrating the potential of fluid-rock interactions in the oceanic lithosphere to generate amino acids abiotically gives credence to the hydrothermal theory for the origin of life, and may shed light on ancient metabolisms and the functioning of the present-day deep biosphere.
High-resolution imaging techniques show that aromatic amino acids such as tryptophan formed abiotically and were subsequently preserved at depth beneath the Atlantis Massif of the Mid-Atlantic Ridge, supporting the hydrothermal theory for the origin of life.
Journal Article
A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems
2021
Clinopyroxene-only thermobarometry is one of the most practical tools to reconstruct crystallization pressures and temperatures of clinopyroxenes. Because it does not require any information of coexisting silicate melt or other co-crystallized mineral phases, it has been widely used to elucidate the physiochemical conditions of crystallizing magmas. However, previously calibrated clinopyroxene-only thermobarometers display low accuracy when being applied to mafic and intermediate magmatic systems. Hence, in this study, we present new empirical nonlinear barometric and thermometric models, which were formulated to improve the performance of clinopyroxene-only thermobarometry. Particularly, a total of 559 experimental runs conducted in the pressure range of 1 bar to 12 kbar have been used for calibration and validation of the new barometric and thermometric formulation. The superiority of our new models with respect to previous ones was confirmed by comparing their performance on 100 replications of calibration and validation, and the standard error of estimate (SEE) of the new barometer and thermometer are 1.66 kbar and 36.6 ∘C, respectively. Although our new barometer and thermometer fail to reproduce the entire test dataset, which has not been used for calibration and validation, they still perform well on clinopyroxenes crystallized from subalkaline basic to intermediate magmas (i.e., basaltic, basalt-andesitic, dacitic magma systems). Thus, their applicability should be limited to basaltic, basalt-andesitic and dacitic magma systems. In a last step, we applied our new thermobarometer to several tholeiitic Icelandic eruptions and established magma storage conditions exhibiting a general consistency with phase equilibria experiments. Therefore, we propose that our new thermobarometer represents a powerful tool to reveal the crystallization conditions of clinopyroxene in mafic to intermediate magmas.
Journal Article
Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia - Part 1: Neso-, cyclo-, ino- and phyllosilicates
by
Shchipalkina, Nadezhda V
,
Britvin, Sergey N
,
Sidorov, Eugeny G
in
Amphiboles
,
Anorthite
,
Arsenic ions
2020
This is the initial paper in a pair of articles devoted to silicate minerals from fumaroles of the Tolbachik volcano (Kamchatka, Russia). These papers contain the first systematic data on silicate mineralization of fumarolic genesis. In this article nesosilicates (forsterite, andradite and titanite), cyclosilicate (a Cu,Zn-rich analogue of roedderite), inosilicates (enstatite, clinoenstatite, diopside, aegirine, aegirine-augite, esseneite, \"Cu,Mg-pyroxene\", wollastonite, potassic-fluoro-magnesio-arfvedsonite, potassic-fluoro-richterite and litidionite) and phyllosilicates (fluorophlogopite, yanzhuminite, \"fluoreastonite\" and the Sn analogue of dalyite) are characterized with a focus on chemistry, crystal-chemical features and occurrence. Unusual As.sup.5+ -rich varieties of forsterite, andradite, titanite, pyroxenes, amphiboles and mica are described. General data on silicate-bearing active fumaroles and the diversity and distribution of silicates in fumarole deposits are reported. Evidence for the fumarolic origin of silicate mineralization is discussed.
Journal Article
Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic
by
Coe, Hugh
,
Ryder, Claire L.
,
Estelles, Victor
in
Aerosol properties
,
Airborne observation
,
Aircraft components
2018
Mineral dust is an important component of the climate system, affecting the radiation balance, cloud properties, biogeochemical cycles, regional circulation and precipitation, as well as having negative effects on aviation, solar energy generation and human health. Dust size and composition has an impact on all these processes. However, changes in dust size distribution and composition during transport, particularly for coarse particles, are poorly understood and poorly represented in climate models. Here we present new in situ airborne observations of dust in the Saharan Air Layer (SAL) and the marine boundary layer (MBL) at the beginning of its transatlantic transport pathway, from the AERosol Properties – Dust (AER-D) fieldwork in August 2015, within the peak season of North African dust export. This study focuses on coarse-mode dust properties, including size distribution, mass loading, shape, composition, refractive indices and optical properties. Size distributions from 0.1 to 100 µm diameter (d) are presented, fully incorporating the coarse and giant modes of dust. Within the MBL, mean effective diameter (deff) and volume median diameter (VMD) were 4.6 and 6.0 µm respectively, giant particles with a mode at 20–30 µm were observed, and composition was dominated by quartz and alumino-silicates at d > 1 µm. Within the SAL, particles larger than 20 µm diameter were always present up to 5 km altitude, in concentrations over 10−5 cm−3, constituting up to 40 % of total dust mass. Mean deff and VMD were 4.0 and 5.5 µm respectively. Larger particles were detected in the SAL than can be explained by sedimentation theory alone. Coarse-mode composition was dominated by quartz and alumino-silicates; the accumulation mode showed a strong contribution from sulfate-rich and sea salt particles. In the SAL, measured single scattering albedos (SSAs) at 550 nm representing d < 2.5 µm were 0.93 to 0.98 (mean 0.97). Optical properties calculated for the full size distribution (0.1 < d < 100 µm) resulted in lower SSAs of 0.91–0.98 (mean 0.95) and mass extinction coefficients of 0.27–0.35 m2 g−1 (mean 0.32 m2 g−1). Variability in SSA was mainly controlled by variability in dust composition (principally iron) rather than by variations in the size distribution, in contrast with previous observations over the Sahara where size is the dominant influence. It is important that models are able to capture the variability and evolution of both dust composition and size distribution with transport in order to accurately represent the impacts of dust on climate. These results provide a new SAL dust dataset, fully representing coarse and giant particles, to aid model validation and development.
Journal Article
The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar
2019
Mineral dust particles are thought to be an important type of ice-nucleating particle (INP) in the mixed-phase cloud regime around the globe. While K-rich feldspar (K-feldspar) has been identified as being a particularly important component of mineral dust for ice nucleation, it has been shown that quartz is also relatively ice-nucleation active. Given quartz typically makes up a substantial proportion of atmospheric desert dust, it could potentially be important for cloud glaciation. Here, we survey the ice-nucleating ability of 10 α-quartz samples (the most common quartz polymorph) when immersed in microlitre supercooled water droplets. Despite all samples being α-quartz, the temperature at which they induce freezing varies by around 12 ∘C for a constant active site density. We find that some quartz samples are very sensitive to ageing in both aqueous suspension and air, resulting in a loss of ice-nucleating activity, while other samples are insensitive to exposure to air and water over many months. For example, the ice-nucleation temperatures for one quartz sample shift down by ∼2 ∘C in 1 h and 12 ∘C after 16 months in water. The sensitivity to water and air is perhaps surprising, as quartz is thought of as a chemically resistant mineral, but this observation suggests that the active sites responsible for nucleation are less stable than the bulk of the mineral. We find that the quartz group of minerals is generally less active than K-feldspars by roughly 7 ∘C, although the most active quartz samples are of a similar activity to some K-feldspars with an active site density, ns(T), of 1 cm−2 at −9 ∘C. We also find that the freshly milled quartz samples are generally more active by roughly 5 ∘C than the plagioclase feldspar group of minerals and the albite end member has an intermediate activity. Using both the new and literature data, active site density parameterizations have been proposed for freshly milled quartz, K-feldspar, plagioclase and albite. Combining these parameterizations with the typical atmospheric abundance of each mineral supports previous work that suggests that K-feldspar is the most important ice-nucleating mineral in airborne mineral dust.
Journal Article
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 3: Aluminosilicates
2019
Aluminosilicates and quartz constitute the majority of airborne mineral dust. Despite similarities in structures and surfaces they differ greatly in terms of their ice nucleation (IN) efficiency. Here, we show that determining factors for their IN activity include surface ion exchange, NH3 or NH4+ adsorption, and surface degradation due to the slow dissolution of the minerals. We performed immersion freezing experiments with the (Na-Ca)-feldspar andesine, the K-feldspar sanidine, the clay mineral kaolinite, the micas muscovite and biotite, and gibbsite and compare their IN efficiencies with those of the previously characterized K-feldspar microcline and quartz. Samples were suspended in pure water as well as in aqueous solutions of NH3, (NH4)2SO4, NH4Cl and Na2SO4, with solute concentrations corresponding to water activities aw equal to 0.88–1.0. Using differential scanning calorimetry (DSC) on emulsified micron-sized droplets, we derived onset temperatures of heterogeneous (Thet) and homogeneous (Thom) freezing as well as heterogeneously frozen water volume fractions (Fhet). Suspensions in pure water of andesine, sanidine and kaolinite yield Thet equal to 242.8, 241.2 and 240.3 K, respectively, while no discernable heterogeneous freezing signal is present in the case of the micas or gibbsite (i.e., Thet≈Thom≈237.0 K). The presence of NH3 and/or NH4+ salts as solutes has distinct effects on the IN efficiency of most of the investigated minerals. When feldspars and kaolinite are suspended in very dilute solutions of NH3 or NH4+ salts, Thet shifts to higher temperatures (by 2.6–7.0 K compared to the pure water suspension). Even micas and gibbsite develop weak heterogeneous freezing activities in ammonia solutions. Conversely, suspensions containing Na2SO4 cause the Thet of feldspars to clearly fall below the water-activity-based immersion freezing description (Δaw= const.) even in very dilute Na2SO4 solutions, while Thet of kaolinite follows the Δaw= constant curve. The water activity determines how the freezing temperature is affected by solute concentration alone, i.e., if the surface properties of the ice nucleating particles are not affected by the solute. Therefore, the complex behavior of the IN activities can only be explained in terms of solute-surface-specific processes. We suggest that the immediate exchange of the native cations (K+, Na+, Ca2+) with protons, when feldspars are immersed in water, is a prerequisite for their high IN efficiency. On the other hand, excess cations from dissolved alkali salts prevent surface protonation, thus explaining the decreased IN activity in such solutions. In kaolinite, the lack of exchangeable cations in the crystal lattice explains why the IN activity is insensitive to the presence of alkali salts (Δaw= const.). We hypothesize that adsorption of NH3 and NH4+ on the feldspar surface rather than ion exchange is the main reason for the anomalous increased Thet in dilute solutions of NH3 or NH4+ salts. This is supported by the response of kaolinite to NH3 or NH4+, despite lacking exchangeable ions. Finally, the dissolution of feldspars in water or solutions leads to depletion of Al and formation of an amorphous layer enriched in Si. This hampers the IN activity of andesine the most, followed by sanidine, then eventually microcline, the least soluble feldspar.
Journal Article
Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost
by
Abbas Rafik
,
Elkhoshkhany, N
,
Ghorab, Hanaa Y
in
Activated clay
,
Blast furnace practice
,
Blast furnace slags
2020
Concrete is the basic building material in the world, and cement is the main material used in the production of concrete. However, there is an urgent need to reduce the consumption of cement, where cement production leads to 5–8% of global emissions of carbon dioxide. Geopolymer concrete is an innovative building material produced by alkaline activation of pozzolanic materials such as fly ash, granulated blast furnace slag, and kaolin clay. Geopolymers are widely used in the production of geopolymer concrete due to their ability to reduce carbon dioxide emissions and reduce high energy consumption. During the present study, the environmental impact of two strength grades (30 MPa and 40 MPa) of metakaolin geopolymer concrete (GPC) was evaluated to study its applicability in the construction sector. The kaolin clay extracted from the Aswan quarries was activated by a mixture of sodium hydroxide and sodium silicate solution. To introduce geopolymer concrete in the Egyptian industry sector, its environmental performance, together with its technical performance, should be competitive to the cement concrete used mainly for the time being. The cost of this new concrete system should also be evaluated. The environmental impact of GPC was evaluated and compared with cement concrete using life cycle assessment analysis and IMPACT 2002+ methodology. The cost of production was calculated for 1 m3 of geopolymer concrete and conventional cement concrete. Metakaolin geopolymer concrete achieved a high compressive strength of ~ 56 MPa, splitting tensile strength of 24 MPa, and modulus of elasticity of 8.5 MPa. The corrosion inhibition of metakaolin geopolymer concrete was ~ 80% better than that of conventional cement concrete. Geopolymer concrete achieved a reduction in global warming potential by 61% and improved the human health category by 9.4%. However, due to the heavy burdens of sodium silicate, the geopolymer concrete negatively affected the quality of the ecosystem by 68% and showed a slightly higher impact than cement concrete on the resource damage category for low strength grade of 30 MPa. The high cost of the basic ingredients of the geopolymer resulted in a high production cost of geopolymer concrete (~ 92 US$) that was three times that of cement concrete (~ 31 US$). Based on the environmental results, geopolymer concrete based on locally available metakaolin clay can be applied in the construction sector as a green alternative material for cement concrete.Graphic abstract
Journal Article
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica
2019
Divergent ice nucleation (IN) efficiencies of quartz, an important component of atmospheric mineral dust, have been reported in previous studies. We show here that quartz particles obtain their IN activity from milling and that quartz aged in water loses most of its IN efficiency relative to freshly milled quartz. Since most studies so far reported IN activities of commercial quartz dusts that were milled already by the manufacturer, IN active samples prevailed. Also, the quartz surface – much in contrast to that of feldspars – is not prone to ammonia-induced IN enhancement. In detail we investigate the influence of solutes on the IN efficiency of various silica (SiO2) particles (crystalline and amorphous) with special focus on quartz. We performed immersion freezing experiments and relate the observed variability in IN activity to the influence of milling, the aging time and to the exposure conditions since milling. Immersion freezing with silica particles suspended in pure water or aqueous solutions of NH3, (NH4)2SO4, NH4HSO4, Na2SO4 and NaOH, with solute concentrations corresponding to water activities aw=0.9–1.0, were investigated in emulsified droplets by means of differential scanning calorimetry (DSC) and analyzed in terms of the onset temperature of the heterogeneous freezing signal Thet and the heterogeneously frozen water volume fraction Fhet. Quartz particles, which originate from milling coarse samples, show a strong heterogeneous freezing peak in pure water with Thet equal to 247–251 K. This IN activity disappears almost completely after aging for 7 months in pure water in a glass vial. During this time quartz slowly grew by incorporating silicic acid leached from the glass vial. Conversely, the synthesized amorphous silica samples show no discernable heterogeneous freezing signal unless they were milled. This implies that defects provide IN activity to silica surfaces, whereas the IN activity of a natural quartz surface is negligible, when it grew under near-equilibrium conditions. For suspensions containing milled quartz and the solutes (NH4)2SO4, NH4HSO4 or Na2SO4, Thet approximately follows ThetΔawhet(aw), the heterogeneous freezing onset temperatures that obey Δawhet criterion, i.e., ThetΔawhet(aw)=Tmelt(aw+Δawhet) with Δawhet being a constant offset with respect to the ice melting point curve, similar to homogeneous IN. This water-activity-based description is expected to hold when the mineral surface is not altered by the presence of the solutes. On the other hand, we observe a slight enhancement in Fhet in the presence of these solutes, implying that the compliance with the Δawhet criterion does not necessarily imply constant Fhet. In contrast to the sulfates, dilute solutions of NH3 or NaOH (molality ≥5×10-4 mol kg−1) reveal Thet by 3–8 K lower than ThetΔawhet(aw), indicating a significant impact on the mineral surface. The lowering of Thet of quartz suspended in dilute NH3 solutions is opposite to the distinct increase in Thet that we found in emulsion freezing experiments with aluminosilicates, namely feldspars, kaolinite, gibbsite and micas. We ascribe this decrease in IN activity to the increased dissolution of quartz under alkaline conditions. The defects that constitute the active sites appear to be more susceptible to dissolution and therefore disappear first on a dissolving surface.
Journal Article
High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder
by
Mynar, Justin L.
,
Yoshida, Masaru
,
Aida, Takuzo
in
639/301/930/1032
,
639/638/224
,
639/638/298/923/1027
2010
Solid progress for hydrogels
Hydrogels are mouldable polymeric materials made mostly of water, used for example as cell tissue cultures and in prosthetics. Hydrogels held together by non-covalent interactions usually have poor mechanical properties, whereas the rather stronger covalently bonded hydrogels cannot self-heal if cut and tend to be brittle. The idea that water-based hydrogels might be developed as environmentally friendly substitutes for conventional petroleum-based plastics in some applications, bringing novel properties with them, comes a little closer with the development of a supramolecular (non-covalent) hydrogel that is a solid thanks to the presence of small quantities of non-water ligands — 3% clay and tiny amounts of an organic binder. This new gel is capable of self-healing, is exceptionally resilient and can be moulded into free-standing shapes that can also be fused together to form more complex architectures.
In the search to reduce our dependency on fossil-fuel energy, new plastic materials that are less dependent on petroleum are being developed, with water-based gels — hydrogels — representing one possible solution. Here, a mixture of water, 3% clay and a tiny amount of a special organic binder is shown to form a transparent hydrogel that can be moulded into shape-persistent, free-standing objects and that rapidly and completely self-heals when damaged.
With the world’s focus on reducing our dependency on fossil-fuel energy, the scientific community can investigate new plastic materials that are much less dependent on petroleum than are conventional plastics. Given increasing environmental issues, the idea of replacing plastics with water-based gels, so-called hydrogels, seems reasonable. Here we report that water and clay (2–3 per cent by mass), when mixed with a very small proportion (<0.4 per cent by mass) of organic components, quickly form a transparent hydrogel. This material can be moulded into shape-persistent, free-standing objects owing to its exceptionally great mechanical strength, and rapidly and completely self-heals when damaged. Furthermore, it preserves biologically active proteins for catalysis. So far
1
no other hydrogels, including conventional ones formed by mixing polymeric cations and anions
2
,
3
or polysaccharides and borax
4
, have been reported to possess all these features. Notably, this material is formed only by non-covalent forces resulting from the specific design of a telechelic dendritic macromolecule with multiple adhesive termini for binding to clay.
Journal Article