Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
943
result(s) for
"Silver Staining"
Sort by:
Historical review: The golden age of the Golgi method in human neuropathology
2024
Golgi methods were used to study human neuropathology in the 1970s, 1980s, and 1990s of the last century. Although a relatively small number of laboratories applied these methods, their impact was crucial by increasing knowledge about: (1) the morphology, orientation, and localization of neurons in human cerebral and cerebellar malformations and ganglionic tumors, and (2) the presence of abnormal structures including large and thin spines (spine dysgenesis) in several disorders linked to mental retardation, focal enlargements of the axon hillock and dendrites (meganeurites) in neuronal storage diseases, growth cone-like appendages in Alzheimer disease, as well as abnormal structures in other dementias. Although there were initial concerns about their reliability, reduced dendritic branches and dendritic spines were identified as common alterations in mental retardation, dementia, and other pathological conditions. Similar observations in appropriate experimental models have supported many abnormalities that were first identified using Golgi methods in human material. Moreover, electron microscopy, immunohistochemistry, fluorescent tracers, and combined methods have proven the accuracy of pioneering observations uniquely visualized as 3D images of fully stained individual neurons. Although Golgi methods had their golden age many years ago, these methods may still be useful complementary tools in human neuropathology.
Journal Article
Repetitive Closed-Skull Traumatic Brain Injury in Mice Causes Persistent Multifocal Axonal Injury and Microglial Reactivity
by
Dikranian, Krikor
,
Levy, Marilyn A.
,
Sanchez, Laura
in
Amyloid beta-Protein Precursor - metabolism
,
Animals
,
Axons - metabolism
2011
Repetitive mild or \"concussive\" traumatic brain injury (TBI) can cause substantial neurologic impairment, but the pathological features of this type of injury are not fully understood. We report an experimental model of TBI in which the closed skulls of anesthetized male C57BL/6J mice are struck with an electromagnetically controlled rubber impactor twice with an interval of 24 hours between impacts. The mice had deficits in Morris water maze performance in the first week after injury that only partially resolved 7 weeks later. By routine histology, there was no apparent bleeding, neuronal cell loss, or tissue disruption, and amyloid precursor protein immunohistochemistry demonstrated very few immunoreactive axonal varicosities. In contrast, silver stainingrevealed extensive abnormalities in the corpus callosum and bilateral external capsule, the ipsilateral cortex and thalamus, and the contralateral hippocampal CA1 stratum radiatum and stratum oriens. Electron microscopy of white matter regions demonstrated axonal cytoskeletal disruption, intra-axonal organelle compaction, and irregularities in axon caliber. Reactive microglia were observed in the same areas as the injured axons by both electron microscopy and Iba1 immunohistochemistry. Quantitative analyses of silver staining and Iba1 immunohistochemistry at multipletime points demonstrated transient cortical and thalamic abnormalities but persistent white matter pathology as late as 7 weeks after injury.Thus, prominent and long-lasting abnormalities in this TBI model were underestimated using conventional approaches. The model may be useful for mechanistic investigations and preclinical assessmentof candidate therapeutics.
Journal Article
High cholesterol level is essential for myelin membrane growth
by
Wehr, Michael C
,
Brügger, Britta
,
Saher, Gesine
in
2',3'-Cyclic-Nucleotide Phosphodiesterases - metabolism
,
Age Factors
,
Animal Genetics and Genomics
2005
Cholesterol in the mammalian brain is a risk factor for certain neurodegenerative diseases, raising the question of its normal function. In the mature brain, the highest cholesterol content is found in myelin. We therefore created mice that lack the ability to synthesize cholesterol in myelin-forming oligodendrocytes. Mutant oligodendrocytes survived, but CNS myelination was severely perturbed, and mutant mice showed ataxia and tremor. CNS myelination continued at a reduced rate for many months, and during this period, the cholesterol-deficient oligodendrocytes actively enriched cholesterol and assembled myelin with >70% of the cholesterol content of wild-type myelin. This shows that cholesterol is an indispensable component of myelin membranes and that cholesterol availability in oligodendrocytes is a rate-limiting factor for brain maturation.
Journal Article
Silver staining (Campbell-Switzer) of neuronal α-synuclein assemblies induced by multiple system atrophy and Parkinson’s disease brain extracts in transgenic mice
by
Lavenir, Isabelle
,
Holton, Janice L.
,
Ghetti, Bernardino
in
alpha-Synuclein - administration & dosage
,
alpha-Synuclein - analysis
,
alpha-Synuclein - toxicity
2019
Synucleinopathies [Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA)] share filamentous α-synuclein assemblies in nerve cells and glial cells. We compared the abilities of brain extracts from MSA and PD patients to induce neuronal α-synuclein assembly and neurodegeneration following intracerebral injection in heterozygous mice transgenic for human mutant A53T α-synuclein. MSA extracts were more potent than PD extracts in inducing α-synuclein assembly and in causing neurodegeneration. MSA assemblies were Campbell-Switzer- and Gallyas-silver-positive, whereas PD assemblies were only Campbell-Switzer-positive, in confirmation of previous findings. However, induced α-synuclein inclusions were invariably Campbell-Switzer-positive and Gallyas-negative, irrespective of whether MSA or PD brain extracts were injected. The α-synuclein inclusions of non-injected homozygous mice transgenic for A53T α-synuclein were also Campbell-Switzer-positive and Gallyas-negative. These findings demonstrate that transgene expression and its intracellular environment dominated over the silver staining properties of the conformers of assembled α-synuclein.
Journal Article
Evolution of Post-Traumatic Neurodegeneration after Controlled Cortical Impact Traumatic Brain Injury in Mice and Rats as Assessed by the De Olmos Silver and Fluorojade Staining Methods
2008
This report documents an analysis of post-traumatic neurodegeneration during the first 7 days after controlled cortical impact (CCI) traumatic brain injury (TBI) in mice and rats using the de Olmos aminocupric silver staining method, which selectively stains degenerating axons and nerve terminals, compared to the fluorojade method, which stains degenerating neuronal cell bodies. A progressive increase in cortical, hippocampal, and thalamic degeneration was observed over the first 48 h after injury in both species. Approximately 50% of the ipsilateral cortical volume was stained at 48 h. Similarly, the dorsal hippocampus showed widespread degeneration in all of the subfields. This included CA1, CA3, CA4, and dentate cell bodies revealed by fluorojade together with a high degree of axonal degeneration in areas carrying afferent and efferent hippocampal projections that is identified by silver staining. These results show that previous CCI studies which have relied on conventional histological methods that show cell body staining alone have underestimated the degree of axonal damage associated with the CCI-TBI model. In order to capture the full extent of the injury to both axons and cell bodies, the combination of silver staining and fluorojade staining is needed, respectively. Future studies of potential neuroprotective agents should probably not rely on the measure of cortical lesion volume or volume of spared cortical tissue using conventional histological stains alone, since these fail to identify the complete extent of the posttraumatic neuropathology that some agents which reduce cortical lesion volume may not be able to effect.
Journal Article
Silver diagnosis in neuropathology: principles, practice and revised interpretation
2007
Silver-staining methods are helpful for histological identification of pathological deposits. In spite of some ambiguities regarding their mechanism and interpretation, they are widely used for histopathological diagnosis. In this review, four major silver-staining methods, modified Bielschowsky, Bodian, Gallyas (GAL) and Campbell-Switzer (CS) methods, are outlined with respect to their principles, basic protocols and interpretations, thereby providing neuropathologists, technicians and neuroscientists with a common basis for comparing findings and identifying the issues that still need to be clarified. Some consider \"argyrophilia\" to be a homogeneous phenomenon irrespective of the lesion and the method. Thus, they seek to explain the differences among the methods by pointing to their different sensitivities in detecting lesions (quantitative difference). Comparative studies, however, have demonstrated that argyrophilia is heterogeneous and dependent not only on the method but also on the lesion (qualitative difference). Each staining method has its own lesion-dependent specificity and, within this specificity, its own sensitivity. This \"method- and lesion-dependent\" nature of argyrophilia enables operational sorting of disease-specific lesions based on their silver-staining profiles, which may potentially represent some disease-specific aspects. Furthermore, comparisons between immunohistochemical and biochemical data have revealed an empirical correlation between GAL+/CS-deposits and 4-repeat (4R) tau (corticobasal degeneration, progressive supranuclear palsy and argyrophilic grains) and its complementary reversal between GAL-/CS+deposits and 3-repeat (3R) tau (Pick bodies). Deposits containing both 3R and 4R tau (neurofibrillary tangles of Alzheimer type) are GAL+/CS+. Although no molecular explanations, other than these empiric correlations, are currently available, these distinctive features, especially when combined with immunohistochemistry, are useful because silver-staining methods and immunoreactions are complementary to each other.
Journal Article
A bead-based immunogold-silver staining assay on capillary-driven microfluidics
2018
Point-of-care (POC) diagnostics are critically needed for the detection of infectious diseases, particularly in remote settings where accurate and appropriate diagnosis can save lives. However, it is difficult to implement immunoassays, and specifically immunoassays relying on signal amplification using silver staining, into POC diagnostic devices. Effective immobilization of antibodies in such devices is another challenge. Here, we present strategies for immobilizing capture antibodies (cAbs) in capillary-driven microfluidic chips and implementing a gold-catalyzed silver staining reaction. We illustrate these strategies using a species/anti-species immunoassay and the capillary assembly of fluorescent microbeads functionalized with cAbs in “bead lanes”, which are engraved in microfluidic chips. The microfluidic chips are fabricated in silicon (Si) and sealed with a dry film resist. Rabbit IgG antibodies in samples are captured on the beads and bound by detection antibodies (dAbs) conjugated to gold nanoparticles. The gold nanoparticles catalyze the formation of a metallic film of silver, which attenuates fluorescence from the beads in an analyte-concentration dependent manner. The performance of these immunoassays was found comparable to that of assays performed in 96 well microtiter plates using “classical” enzyme-linked immunosorbent assay (ELISA). The proof-of-concept method developed here can detect 24.6 ng mL−1 of rabbit IgG antibodies in PBS within 20 min, in comparison to 17.1 ng mL−1 of the same antibodies using a ~140-min-long ELISA protocol. Furthermore, the concept presented here is flexible and necessitate volumes of samples and reagents in the range of just a few microliters.
Journal Article
Spatial and Temporal Characteristics of Neurodegeneration after Controlled Cortical Impact in Mice: More than a Focal Brain Injury
by
Thompson, Brian M.
,
Sullivan, Patrick G.
,
Pavel, Krissi M.
in
Animals
,
Biological and medical sciences
,
Brain - metabolism
2005
The present study examined the neuropathology of the lateral controlled cortical impact (CCI) traumatic brain injury (TBI) model in mice utilizing the de Olmos silver staining method that selectively identifies degenerating neurons and their processes. The time course of ipsilateral and contralateral neurodegeneration was assessed at 6, 24, 48, 72, and 168 h after a severe (1.0 mm, 3.5 M/sec) injury in young adult CF-1 mice. At 6 hrs, neurodegeneration was apparent in all layers of the ipsilateral cortex at the epicenter of the injury. A low level of degeneration was also detected within the outer molecular layer of the underlying hippocampal dentate gyrus and to the mossy fiber projections in the CA3 pyramidal subregions. A time-dependent increase in cortical and hippocampal neurodegeneration was observed between 6 and 72 hrs post-injury. At 24 h, neurodegeneration was apparent in the CA1 and CA3 pyramidal and dentate gyral granule neurons and in the dorsolateral portions of the thalamus. Image analysis disclosed that the overall volume of ipsilateral silver staining was maximal at 48 h. In the case of the hippocampus, staining was generalized at 48 and 72 h, indicative of damage to all of the major afferent pathways: perforant path, mossy fibers and Schaffer collaterals as well as the efferent CA1 pyramidal axons. The hippocampal neurodegeneration was preceded by a significant increase in the levels of calpain-mediated breakdown products of the cytoskeletal protein α-spectrin that began at 6 h, and persisted out to 72 h post-injury. Damage to the corpus callosal fibers was observed as early as 24 h. An anterior to posterior examination of neurodegeneration showed that the cortical damage included the visual cortex. At 168 h (7 days), neurodegeneration in the ipsilateral cortex and hippocampus had largely abated except for ongoing staining in the cortical areas surrounding the contusion lesion and in hippocampal mossy fiber projections. Callosal and thalamic neurodegeneration was also very intense. This more complete neuropathological examination of the CCI model shows that the associated damage is much more widespread than previously appreciated. The extent of ipsilateral and contralateral neurodegeneration provides a more complete anatomical correlate for the cognitive and motor dysfunction seen in this paradigm and suggests that visual disturbances are also likely to be involved in the post-CCI neurological deficits
Journal Article
Interlaboratory Comparison of Assessments of Alzheimer Disease-Related Lesions: A Study of the BrainNet Europe Consortium
by
Gelpi, Ellen
,
Kopp, Nicolas
,
Meyronet, David
in
Aged
,
Aged, 80 and over
,
Alzheimer Disease - diagnosis
2006
ABSTRACTThis interlaboratory study evaluated the reproducibility of the assessments of neuritic plaques and neurofibrillary tangles (NFTs)-the hallmark lesions of Alzheimer disease-and compared the staining between the BrainNet Europe centers. To reduce the topography-related inconsistencies in assessments, we used a 2-mm tissue microarray (TMA) technique. The TMA block included 42 core samples taken from 21 paraffin blocks. The assessments were done on Bielschowsky and Gallyas silver stains using an immunohistochemical (IHC) method with antibodies directed to beta-amyloid (IHC/Aβ) and hyperphosphorylated tau (IHC/HPtau). The staining quality and the assessments differed between the participants, being most diverse with Bielschowsky (good/acceptable stain in 53% of centers) followed by Gallyas (good/acceptable stain in 57%) and IHC/Aβ (good/acceptable stain in 71%). The most uniform staining quality and assessment was obtained with the IHC/HPtau method (good/acceptable stain in 94% of centers). The neuropathologic diagnostic protocol (Consortium to Establish a Registry for Alzheimer Disease, Braak and Braak, and the National Institute of Aging and Reagan [NIA-Reagan] Institute) that was used significantly influenced the agreement, being highest with NIA-Reagan (54%) recommendations. This agreement was improved by visualization of NFTs using the IHC/HPtau method. Therefore, the IHC/HPtau methodology to visualize NFTs and neuropil threads should be considered as a method of choice in a future diagnostic protocol for Alzheimer disease.
Journal Article
Brain plasticity and mental processes: Cajal again
by
DeFelipe, Javier
in
Animal Genetics and Genomics
,
Behavioral Sciences
,
Biological and medical sciences
2006
It is 100 years since Cajal shared, with Golgi, the Nobel Prize for Physiology or Medicine. Despite the recognition Cajal received for his pioneering studies on the functional organization of the CNS, his fundamental observations on plasticity are less well-known.
The year 2006 marks the 100th anniversary of the first Nobel Prize for Physiology or Medicine for studies in the field of the Neurosciences jointly awarded to Camillo Golgi and Santiago Ramón y Cajal for their key contributions to the study of the nervous system. This award represented the beginning of the modern era of neuroscience. Using the Golgi method, Cajal made fundamental, but often unappreciated, contributions to the study of the relationship between brain plasticity and mental processes. Here, I focus on some of these early experiments and how they continue to influence studies of brain plasticity.
Journal Article