Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,496 result(s) for "Simian Immunodeficiency Virus - immunology"
Sort by:
Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine
Towards T-cell vaccines for HIV/AIDS Following some high-profile clinical trial failures in recent years, the emphasis in HIV/AIDS vaccine research has shifted away from T-cell-based vaccines that control viral replication towards vaccines that block acquisition of infection. Hansen et al . take a novel route to T-cell-based immunity, using cytomegalovirus (CMV) vectors. They find that vaccination with a rhesus-CMV-based vaccine against simian immunodeficiency virus (SIV) provides long-term protection from SIV challenge in rhesus macaques. Protection seems to be mediated by tissue-resident T-effector memory responses, suggesting that persistent vectors such as CMV may be effective in HIV/AIDS vaccines. The acquired immunodeficiency syndrome (AIDS)-causing lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) effectively evade host immunity and, once established, infections with these viruses are only rarely controlled by immunological mechanisms 1 , 2 , 3 . However, the initial establishment of infection in the first few days after mucosal exposure, before viral dissemination and massive replication, may be more vulnerable to immune control 4 . Here we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors 5 establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (T EM ) responses at potential sites of SIV replication in rhesus macaques and stringently control highly pathogenic SIV MAC239 infection early after mucosal challenge. Thirteen of twenty-four rhesus macaques receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (versus 0 of 9 DNA/Ad5-vaccinated rhesus macaques) manifested early complete control of SIV (undetectable plasma virus), and in twelve of these thirteen animals we observed long-term (≥1 year) protection. This was characterized by: occasional blips of plasma viraemia that ultimately waned; predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; no depletion of effector-site CD4 + memory T cells; no induction or boosting of SIV Env-specific antibodies; and induction and then loss of T-cell responses to an SIV protein (Vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8 + T-cell responses in the vaccine phase, and occurred without anamnestic T-cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8 + or CD4 + lymphocyte depletion and, at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations that indicate the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated T EM responses might significantly contribute to an efficacious HIV/AIDS vaccine.
Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys
The latent viral reservoir is the critical barrier for the development of a cure for HIV-1 infection. Previous studies have shown direct antiviral activity of potent HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) administered when antiretroviral therapy (ART) was discontinued, but it remains unclear whether bNAbs can target the viral reservoir during ART. Here we show that administration of the V3 glycan-dependent bNAb PGT121 together with the Toll-like receptor 7 (TLR7) agonist vesatolimod (GS-9620) during ART delayed viral rebound following discontinuation of ART in simian–human immunodeficiency virus (SHIV)-SF162P3-infected rhesus monkeys in which ART was initiated during early acute infection. Moreover, in the subset of monkeys that were treated with both PGT121 and GS-9620 and that did not show viral rebound after discontinuation of ART, adoptive transfer studies and CD8-depletion studies also did not reveal virus. These data demonstrate the potential of bNAb administration together with innate immune stimulation as a possible strategy for targeting the viral reservoir. In monkeys infected with an AIDS-like virus, a combination of a broadly neutralizing antibody and an immune stimulator during antiretroviral therapy suppressed viral rebound after antiretroviral drug discontinuation.
Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys
A combination of therapeutic vaccination with Ad26/MVA and stimulation of innate immune responses leads to improved virologic control and delayed rebound in SIV-infected macaques following discontinuation of antiretroviral therapy. Combining anti-HIV vaccination and immuostimulant These authors demonstrate that combining an experimental vaccine—consisting of an adenovirus serotype 26 vector vaccine and an MVA vector vaccine (Ad26/MVA)—with the innate immune stimulant Toll-like receptor 7 leads to improved virologic control and delayed rebound following discontinuation of stable antiretroviral therapy in SIV-infected macaques. The development of immunologic interventions that can target the viral reservoir in HIV-1-infected individuals is a major goal of HIV-1 research 1 , 2 . However, little evidence exists that the viral reservoir can be sufficiently targeted to improve virologic control following discontinuation of antiretroviral therapy. Here we show that therapeutic vaccination with Ad26/MVA (recombinant adenovirus serotype 26 (Ad26) prime, modified vaccinia Ankara (MVA) boost) 3 , 4 and stimulation of TLR7 (Toll-like receptor 7) improves virologic control and delays viral rebound following discontinuation of antiretroviral therapy in SIV-infected rhesus monkeys that began antiretroviral therapy during acute infection. Therapeutic vaccination with Ad26/MVA resulted in a marked increase in the magnitude and breadth of SIV-specific cellular immune responses in virologically suppressed, SIV-infected monkeys. TLR7 agonist administration led to innate immune stimulation and cellular immune activation. The combination of Ad26/MVA vaccination and TLR7 stimulation resulted in decreased levels of viral DNA in lymph nodes and peripheral blood, and improved virologic control and delayed viral rebound following discontinuation of antiretroviral therapy. The breadth of cellular immune responses correlated inversely with set point viral loads and correlated directly with time to viral rebound. These data demonstrate the potential of therapeutic vaccination combined with innate immune stimulation as a strategy aimed at a functional cure for HIV-1 infection.
Early antibody therapy can induce long-lasting immunity to SHIV
Early administration of broadly neutralizing antibodies in a macaque SHIV infection model is associated with very low levels of persistent viraemia, which leads to the establishment of T-cell immunity and resultant long-term infection control. Antibodies fight HIV No effective vaccine has yet been developed against the human immunodeficiency virus type 1 (HIV-1), which is endemic in many areas of the world. Yoshiaki Nishimura et al . studied the effects of giving broadly neutralizing antibodies against HIV-1 to rhesus macaques shortly after beginning of exposure to low doses of the simian/human immunodeficiency virus (SHIV). This type of immunotherapy was associated with the persistence of low levels of the virus in the animals' blood, which led to the establishment of T-cell immunity and resulted in enhanced infection control. These findings could stimulate research into the mechanisms of HIV-1 control in infected humans. Highly potent and broadly neutralizing anti-HIV-1 antibodies (bNAbs) have been used to prevent and treat lentivirus infections in humanized mice, macaques, and humans 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 . In immunotherapy experiments, administration of bNAbs to chronically infected animals transiently suppresses virus replication, which invariably returns to pre-treatment levels and results in progression to clinical disease. Here we show that early administration of bNAbs in a macaque simian/human immunodeficiency virus (SHIV) model is associated with very low levels of persistent viraemia, which leads to the establishment of T-cell immunity and resultant long-term infection control. Animals challenged with SHIV AD8-EO by mucosal or intravenous routes received a single 2-week course of two potent passively transferred bNAbs (3BNC117 and 10-1074 (refs 13 , 14 )). Viraemia remained undetectable for 56–177 days, depending on bNAb half-life in vivo . Moreover, in the 13 treated monkeys, plasma virus loads subsequently declined to undetectable levels in 6 controller macaques. Four additional animals maintained their counts of T cells carrying the CD4 antigen (CD4 + ) and very low levels of viraemia persisted for over 2 years. The frequency of cells carrying replication-competent virus was less than 1 per 10 6 circulating CD4 + T cells in the six controller macaques. Infusion of a T-cell-depleting anti-CD8β monoclonal antibody to the controller animals led to a specific decline in levels of CD8 + T cells and the rapid reappearance of plasma viraemia. In contrast, macaques treated for 15 weeks with combination anti-retroviral therapy, beginning on day 3 after infection, experienced sustained rebound plasma viraemia when treatment was interrupted. Our results show that passive immunotherapy during acute SHIV infection differs from combination anti-retroviral therapy in that it facilitates the emergence of potent CD8 + T-cell immunity able to durably suppress virus replication.
Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection
Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathways.
Sustained virologic control in SIV⁺ macaques after antiretroviral and α₄β₇ antibody therapy
Antiretroviral drug therapy (ART) effectively suppresses replication of both the immunodeficiency viruses, human (HIV) and simian (SIV); however, virus rebounds soon after ART is withdrawn. SIV-infected monkeys were treated with a 90-day course of ART initiated at 5 weeks post infection followed at 9 weeks post infection by infusions of a primatized monoclonal antibody against the α₄β₇ integrin administered every 3 weeks until week 32. These animals subsequently maintained low to undetectable viral loads and normal CD4⁺ cell counts in plasma and gastrointestinal tissues for more than 9 months, even after all treatment was withdrawn. This combination therapy allows macaques to effectively control viremia and reconstitute their immune systems without a need for further therapy.
Route of immunization defines multiple mechanisms of vaccine-mediated protection against SIV
Antibodies are the primary correlate of protection for most licensed vaccines; however, their mechanisms of protection may vary, ranging from physical blockade to clearance via the recruitment of innate immunity. Here, we uncover striking functional diversity in vaccine-induced antibodies that is driven by immunization site and is associated with reduced risk of SIV infection in nonhuman primates. While equivalent levels of protection were observed following intramuscular (IM) and aerosol (AE) immunization with an otherwise identical DNA prime–Ad5 boost regimen, reduced risk of infection was associated with IgG-driven antibody-dependent monocyte-mediated phagocytosis in the IM vaccinees, but with vaccine-elicited IgA-driven neutrophil-mediated phagocytosis in AE-immunized animals. Thus, although route-independent correlates indicate a critical role for phagocytic Fc-effector activity in protection from SIV, the site of immunization may drive this Fc activity via distinct innate effector cells and antibody isotypes. Moreover, the same correlates predicted protection from SHIV infection in a second nonhuman primate vaccine trial using a disparate IM canarypox prime–protein boost strategy, analogous to that used in the first moderately protective human HIV vaccine trial. These data identify orthogonal functional humoral mechanisms, initiated by distinct vaccination routes and immunization strategies, pointing to multiple, potentially complementary correlates of immunity that may support the rational design of a protective vaccine against HIV. Distinct routes of immunization elicit different antibody isotypes and functions associated with protection against SIV infection that converge on phagocytosis as a candidate protective mechanism of independent SIV vaccines.
Protective efficacy of adenovirus/protein vaccines against SIV challenges in rhesus monkeys
Preclinical studies of viral vector–based HIV-1 vaccine candidates have previously shown partial protection against neutralization-resistant virus challenges in rhesus monkeys. In this study, we evaluated the protective efficacy of adenovirus serotype 26 (Ad26) vector priming followed by purified envelope (Env) glycoprotein boosting. Rhesus monkeys primed with Ad26 vectors expressing SIVsmE543 Env, Gag, and Pol and boosted with AS01B-adjuvanted SIVmac32H Env gp140 demonstrated complete protection in 50% of vaccinated animals against a series of repeated, heterologous, intrarectal SIVmac251 challenges that infected all controls. Protective efficacy correlated with the functionality of Env-specific antibody responses. Comparable protection was also observed with a similar Ad/Env vaccine against repeated, heterologous, intrarectal SHIV-SF162P3 challenges. These data demonstrate robust protection by Ad/Env vaccines against acquisition of neutralization-resistant virus challenges in rhesus monkeys.
Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: a Functional Latent Reservoir
A human immunodeficiency virus (HIV) infection cure requires an understanding of the cellular and anatomical sites harboring virus that contribute to viral rebound upon treatment interruption. Despite antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are reported in HIV-infected individuals on ART. Biomarkers for macrophage activation and neuronal damage in cerebrospinal fluid (CSF) of HIV-infected individuals demonstrate continued effects of HIV in brain and suggest that the central nervous system (CNS) may serve as a viral reservoir. Using a simian immunodeficiency virus (SIV)/macaque model for HIV encephalitis and AIDS, we evaluated whether infected cells persist in brain despite ART. Eight SIV-infected pig-tailed macaques were virally suppressed with ART, and plasma and CSF viremia levels were analyzed longitudinally. To assess whether virus persisted in brain macrophages (BrMΦ) in these macaques, we used a macrophage quantitative viral outgrowth assay (MΦ-QVOA), PCR, and in situ hybridization (ISH) to measure the frequency of infected cells and the levels of viral RNA and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, although viral DNA was detected in all animals. The MΦ-QVOA demonstrated that the majority of suppressed animals contained latently infected BrMΦ. We also showed that virus produced in the MΦ-QVOAs was replication competent, suggesting that latently infected BrMΦ are capable of reestablishing productive infection upon treatment interruption. This report provides the first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART. IMPORTANCE Resting CD4 + T cells are currently the only cells that fit the definition of a latent reservoir. However, recent evidence suggests that HIV/SIV-infected macrophages persist despite ART. Markers of macrophage activation and neuronal damage are observed in the CSF of HIV-infected individuals and of SIV-infected macaques on suppressive ART regimens, suggesting that the CNS has continued virus infection and latent infection. A controversy exists as to whether brain macrophages represent a latent source of replication-competent virus capable of reestablishing infection upon treatment interruption. In this study, we demonstrated the presence of the latent macrophage reservoir in brains of SIV-infected ART-treated macaques and analyzed the reservoir using our established outgrowth assay to quantitate macrophages harboring replication-competent SIV genomes. Our results support the idea of the existence of other latent reservoirs in addition to resting CD4 + T cells and underscore the importance of macrophages in developing strategies to eradicate HIV. Resting CD4 + T cells are currently the only cells that fit the definition of a latent reservoir. However, recent evidence suggests that HIV/SIV-infected macrophages persist despite ART. Markers of macrophage activation and neuronal damage are observed in the CSF of HIV-infected individuals and of SIV-infected macaques on suppressive ART regimens, suggesting that the CNS has continued virus infection and latent infection. A controversy exists as to whether brain macrophages represent a latent source of replication-competent virus capable of reestablishing infection upon treatment interruption. In this study, we demonstrated the presence of the latent macrophage reservoir in brains of SIV-infected ART-treated macaques and analyzed the reservoir using our established outgrowth assay to quantitate macrophages harboring replication-competent SIV genomes. Our results support the idea of the existence of other latent reservoirs in addition to resting CD4 + T cells and underscore the importance of macrophages in developing strategies to eradicate HIV.
Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response
African green monkeys (AGMs) infected with the AGM type of SIV (SIVagm) do not develop chronic immune activation and AIDS, despite viral loads similar to those detected in humans infected with HIV-1 and rhesus macaques (RMs) infected with the RM type of SIV (SIVmac). Because chronic immune activation drives progressive CD4+ T cell depletion and immune cell dysfunctions, factors that characterize disease progression, we sought to understand the molecular basis of this AGM phenotype. To this end, we longitudinally assessed the gene expression profiles of blood- and lymph node-derived CD4+ cells from AGMs and RMs in response to SIVagm and SIVmac infection, respectively, using a genomic microarray platform. The molecular signature of acute infection was characterized, in both species, by strong upregulation of type I IFN-stimulated genes (ISGs). ISG expression returned to basal levels after postinfection day 28 in AGMs but was sustained in RMs, especially in the lymph node-derived cells. We also found that SIVagm induced IFN-alpha production by AGM cells in vitro and that low IFN-alpha levels were sufficient to induce strong ISG responses. In conclusion, SIV infection triggered a rapid and strong IFN-alpha response in vivo in both AGMs and RMs, with this response being efficiently controlled only in AGMs, possibly as a result of active regulatory mechanisms.