Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
188 result(s) for "Simple clustering"
Sort by:
High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images
High-resolution crop mapping is of great significance in agricultural monitoring, precision agriculture, and providing critical information for crop yield or disaster monitoring. Meanwhile, medium resolution time-series optical and synthetic aperture radar (SAR) images can provide useful phenological information. Combining high-resolution satellite data and medium resolution time-series images provides a great opportunity for fine crop mapping. Simple Non-Iterative Clustering (SNIC) is a state-of-the-art image segmentation algorithm that shows the advantages of efficiency and high accuracy. However, the application of SNIC in crop mapping based on the combination of high-resolution and medium-resolution images is unknown. Besides, there is still little research on the influence of the superpixel size (one of the key user-defined parameters of the SNIC method) on classification accuracy. In this study, we employed a 2 m high-resolution GF-1 pan-sharpened image and 10 m medium resolution time-series Sentinel-1 C-band Synthetic Aperture Radar Instrument (C-SAR) and Sentinel-2 Multispectral Instrument (MSI) images to carry out rice mapping based on the SNIC method. The results show that with the increase of the superpixel size, the classification accuracy increased at first and then decreased rapidly after reaching the summit when the superpixel size is 27. The classification accuracy of the combined use of optical and SAR data is higher than that using only Sentinel-2 MSI or Sentinel-1 C-SAR vertical transmitted and vertical received (VV) or vertical transmitted and horizontal received (VH) data, with overall accuracies of 0.8335, 0.8282, 0.7862, and 0.7886, respectively. Meanwhile, the results also indicate that classification based on superpixels obtained by SNIC significantly outperforms classification based on original pixels. The overall accuracy, producer accuracy, and user accuracy of SNIC superpixel-based classification increased by 9.14%, 17.16%, 27.35% and 1.36%, respectively, when compared with the pixel-based classification, based on the combination of optical and SAR data (using the random forest as the classifier). The results show that SNIC superpixel segmentation is a feasible method for high-resolution crop mapping based on multi-source remote sensing data. The automatic selection of the optimal superpixel size of SNIC will be focused on in future research.
Clustering in small area estimation with area level linear mixed models
Finding reliable estimates of parameters of subpopulations (areas) in small area estimation is an important problem especially when there are few or no samples in some areas. Clustering small areas on the basis of the Euclidean distance between their corresponding covariates is proposed to obtain smaller mean-squared prediction error (MSPE) for the predicted values of area means by using area level linear mixed models. We first propose a statistical test to investigate the homogeneity of variance components between clusters. Then, we obtain the empirical best linear unbiased predictor of small area means by taking into account the difference between variance components in different clusters. We study the performance of our proposed test as well as the effect of the clustering on the MSPE of small area means by using simulation studies. We also obtain a second-order approximation to the MSPE of small area means and derive a second-order unbiased estimator of the MSPE. The results show that the MSPE of small area means can be improved when the variance components are different. The improvement in the MSPE is significant when the difference between variance components is considerable. Finally, the methodology proposed is applied to a real data set.
Pixel- vs. Object-Based Landsat 8 Data Classification in Google Earth Engine Using Random Forest: The Case Study of Maiella National Park
With the general objective of producing a 2018–2020 Land Use/Land Cover (LULC) map of the Maiella National Park (central Italy), useful for a future long-term LULC change analysis, this research aimed to develop a Landsat 8 (L8) data composition and classification process using Google Earth Engine (GEE). In this process, we compared two pixel-based (PB) and two object-based (OB) approaches, assessing the advantages of integrating the textural information in the PB approach. Moreover, we tested the possibility of using the L8 panchromatic band to improve the segmentation step and the object’s textural analysis of the OB approach and produce a 15-m resolution LULC map. After selecting the best time window of the year to compose the base data cube, we applied a cloud-filtering and a topography-correction process on the 32 available L8 surface reflectance images. On this basis, we calculated five spectral indices, some of them on an interannual basis, to account for vegetation seasonality. We added an elevation, an aspect, a slope layer, and the 2018 CORINE Land Cover classification layer to improve the available information. We applied the Gray-Level Co-Occurrence Matrix (GLCM) algorithm to calculate the image’s textural information and, in the OB approaches, the Simple Non-Iterative Clustering (SNIC) algorithm for the image segmentation step. We performed an initial RF optimization process finding the optimal number of decision trees through out-of-bag error analysis. We randomly distributed 1200 ground truth points and used 70% to train the RF classifier and 30% for the validation phase. This subdivision was randomly and recursively redefined to evaluate the performance of the tested approaches more robustly. The OB approaches performed better than the PB ones when using the 15 m L8 panchromatic band, while the addition of textural information did not improve the PB approach. Using the panchromatic band within an OB approach, we produced a detailed, 15-m resolution LULC map of the study area.
SLIC Superpixel-Based l 2,1 -Norm Robust Principal Component Analysis for Hyperspectral Image Classification
Hyperspectral Images (HSIs) contain enriched information due to the presence of various bands, which have gained attention for the past few decades. However, explosive growth in HSIs' scale and dimensions causes \"Curse of dimensionality\" and \"Hughes phenomenon\". Dimensionality reduction has become an important means to overcome the \"Curse of dimensionality\". In hyperspectral images, labeled samples are more difficult to collect because they require many labor and material resources. Semi-supervised dimensionality reduction is very important in mining high-dimensional data due to the lack of costly-labeled samples. The promotion of the supervised dimensionality reduction method to the semi-supervised method is mostly done by graph, which is a powerful tool for characterizing data relationships and manifold exploration. To take advantage of the spatial information of data, we put forward a novel graph construction method for semi-supervised learning, called SLIC Superpixel-based l 2 , 1 -norm Robust Principal Component Analysis (SURPCA ), which integrates superpixel segmentation method Simple Linear Iterative Clustering (SLIC) into Low-rank Decomposition. First, the SLIC algorithm is adopted to obtain the spatial homogeneous regions of HSI. Then, the l 2 , 1 -norm RPCA is exploited in each superpixel area, which captures the global information of homogeneous regions and preserves spectral subspace segmentation of HSIs very well. Therefore, we have explored the spatial and spectral information of hyperspectral image simultaneously by combining superpixel segmentation with RPCA. Finally, a semi-supervised dimensionality reduction framework based on SURPCA graph is used for feature extraction task. Extensive experiments on multiple HSIs showed that the proposed spectral-spatial SURPCA is always comparable to other compared graphs with few labeled samples.
A Graph-Based Superpixel Segmentation Approach Applied to Pansharpening
In this paper, an image-driven regional pansharpening technique based on simplex optimization analysis with a graph-based superpixel segmentation strategy is proposed. This fusion approach optimally combines spatial information derived from a high-resolution panchromatic (PAN) image and spectral information captured from a low-resolution multispectral (MS) image to generate a unique comprehensive high-resolution MS image. As the performance of such a fusion method relies on the choice of the fusion strategy, and in particular, on the way the algorithm is used for estimating gain coefficients, our proposal is dedicated to computing the injection gains over a graph-driven segmentation map. The graph-based segments are obtained by applying simple linear iterative clustering (SLIC) on the MS image followed by a region adjacency graph (RAG) merging stage. This graphical representation of the segmentation map is used as guidance for spatial information to be injected during fusion processing. The high-resolution MS image is achieved by inferring locally the details in accordance with the local simplex injection fusion rule. The quality improvements achievable by our proposal are evaluated and validated at reduced and at full scales using two high resolution datasets collected by GeoEye-1 and WorldView-3 sensors.
Robust Global Motion Estimation for Video Stabilization Based on Improved K-Means Clustering and Superpixel
Obtaining accurate global motion is a crucial step for video stabilization. This paper proposes a robust and simple method to implement global motion estimation. We don’t extend the framework of 2D video stabilization but add a “plug and play” module to motion estimation based on feature points. Firstly, simple linear iterative clustering (SLIC) pre-segmentation is used to obtain superpixels of the video frame, clustering is performed according to the superpixel centroid motion vector and cluster center with large value is eliminated. Secondly, in order to obtain accurate global motion estimation, an improved K-means clustering is proposed. We match the feature points of the remaining superpixels between two adjacent frames, establish a feature points’ motion vector space, and use improved K-means clustering for clustering. Finally, the richest cluster is being retained, and the global motion is obtained by homography transformation. Our proposed method has been verified on different types of videos and has efficient performance than traditional approaches. The stabilization video has an average improvement of 0.24 in the structural similarity index than the original video and 0.1 higher than the traditional method.
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
Timely and accurate rice spatial distribution maps play a vital role in food security and social stability. Early-season rice mapping is of great significance for yield estimation, crop insurance, and national food policymaking. Taking Tongjiang City in Heilongjiang Province with strong spatial heterogeneity as study area, a hierarchical K-Means binary automatic rice classification method based on phenological feature optimization (PFO-HKMAR) is proposed, using Google Earth Engine platform and Sentinel-1/2, and Landsat 7/8 data. First, a SAR backscattering intensity time series is reconstructed and used to construct and optimize polarization characteristics. A new SAR index named VH-sum is built, which is defined as the summation of VH backscattering intensity for specific time periods based on the temporal changes in VH polarization characteristics of different land cover types. Then comes feature selection, optimization, and reconstruction of optical data. Finally, the PFO-HKMAR classification method is established based on Simple Non-Iterative Clustering. PFO-HKMAR can achieve early-season rice mapping one month before harvest, with overall accuracy, Kappa, and F1 score reaching 0.9114, 0.8240 and 0.9120, respectively (F1 score is greater than 0.9). Compared with the two crop distribution datasets in Northeast China and ARM-SARFS, overall accuracy, Kappa, and F1 scores of PFO-HKMAR are improved by 0.0507–0.1957, 0.1029–0.3945, and 0.0611–0.1791, respectively. The results show that PFO-HKMAR can be promoted in Northeast China to enable early-season rice mapping, and provide valuable and timely information to different stakeholders and decision makers.
Evaluating segmentation methods for UAV-Based Spoil Pile Delineation
Mine waste dumps consist of individual, blob-like spoil piles, each with unique geological and geotechnical attributes that contribute to the overall stability of the dump. Manually characterising these individual spoil piles presents challenges due to issues of accessibility, safety risks, and time consumption. Analysis of remotely acquired images, through object-based classification, offers a promising solution for the effective identification and characterisation of individual spoil piles. However, object-based classification’s effectiveness hinges on segmentation, an aspect often overlooked in spoil pile analysis. Therefore, this study aims to identify and compare various segmentation approaches to pave the way for image-based spoil characterisation. A comparative analysis is conducted between traditional segmentation approaches and those rooted in deep learning methodologies. Among the diverse segmentation approaches evaluated, the morphology-based deep learning segmentation approach, Segment Anything Model (SAM), exhibited superior performance compared to other approaches. This outcome underscores the effectiveness of incorporating morphological data and deep learning techniques for accurate and efficient segmentation of spoil pile. The findings of this study provide valuable insights into the optimisation of segmentation strategies, thereby contributing to the application of image-based monitoring of spoil piles and promoting the sustainable and hazard free management of mine dump environments.
Regional Forest Wildfire Mapping Through Integration of Sentinel-2 and Landsat 8 Data in Google Earth Engine with Semi-Automatic Training Sample Generation
Accurate mapping of burned forest areas in mountainous regions is essential for wildfire assessment and post-fire ecological management. This study develops an FS-SNIC-ML workflow that integrates multi-source optical fusion, semi-automatic sample generation, feature selection, and object-based machine-learning classification to support reliable burned-area mapping under complex terrain conditions. A pseudo-invariant feature (PIFS)-based fusion of Sentinel-2 and Landsat 8 imagery was employed to generate cloud-free, gap-free, and spectrally consistent pre- and post-fire reflectance datasets. Burned and unburned samples were constructed using a semi-automatic SAM–GLCM–PCA–Otsu procedure and county-level stratified sampling to ensure spatial representa-tiveness. Feature selection using LR, RF, and Boruta identified dNBR, dNDVI, and dEVI as the most discriminative variables. Within the SNIC-supported GEOBIA framework, four classifiers were evaluated; RF performed best, achieving overall accuracies of 92.02% for burned areas and 94.04% for unburned areas, outperforming SVM, CART, and KNN. K-means clustering of dNBR revealed spatial variation in fire conditions, while geographical detector analysis showed that NDVI, temperature, soil moisture, and their pairwise interactions were the dominant drivers of wildfire hotspot density. The proposed workflow provides an effective and transferable approach for high-precision burned-area extraction and quantification of wildfire-driving factors in mountainous forest regions.
A Superpixel-by-Superpixel Clustering Framework for Hyperspectral Change Detection
Hyperspectral image change detection (HSI-CD) is an interesting task in the Earth’s remote sensing community. However, current HSI-CD methods are feeble at detecting subtle changes from bitemporal HSIs, because the decision boundary is partially stretched by strong changes so that subtle changes are ignored. In this paper, we propose a superpixel-by-superpixel clustering framework (SSCF), which avoids the confusion of different changes and thus reduces the impact on decision boundaries. Wherein the simple linear iterative clustering (SLIC) is employed to spatially segment the different images (DI) of the bitemporal HSIs into superpixels. Meanwhile, the Gaussian mixture model (GMM) extracts uncertain pixels from the DI as a rough threshold for clustering. The final CD results are obtained by passing the determined superpixels and uncertain pixels through K-means. The experimental results of two spaceborne bitemporal HSIs datasets demonstrate competitive efficiency and accuracy in the proposed SSCF.