Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
12,678 result(s) for "Sine function"
Sort by:
Power Series Expansions of Real Powers of Inverse Cosine and Sine Functions, Closed-Form Formulas of Partial Bell Polynomials at Specific Arguments, and Series Representations of Real Powers of Circular Constant
In this paper, by means of the Faà di Bruno formula, with the help of explicit formulas for partial Bell polynomials at specific arguments of two specific sequences generated by derivatives at the origin of the inverse sine and inverse cosine functions, and by virtue of two combinatorial identities containing the Stirling numbers of the first kind, the author establishes power series expansions for real powers of the inverse cosine (sine) functions and the inverse hyperbolic cosine (sine) functions. By comparing different series expansions for the square of the inverse cosine function and for the positive integer power of the inverse sine function, the author not only finds infinite series representations of the circular constant π and its real powers, but also derives several combinatorial identities involving central binomial coefficients and the Stirling numbers of the first kind.
New inequalities between the inverse hyperbolic tangent and the analogue for corresponding functions
In this paper, we present new inequalities which reveal further relationship for both the inverse tangent function arctan(x) and the inverse hyperbolic function arctanh(x). At the same time, we give the analogue for inverse hyperbolic tangent and other corresponding functions.
Inequalities between the inverse hyperbolic tangent and the inverse sine and the analogue for corresponding functions
In this paper, we obtain some new inequalities which reveal the further relationship between the inverse tangent function arctanx and the inverse hyperbolic sine function sinh−1x. At the same time, we give the analogue for inverse hyperbolic tangent and inverse sine.
The Natural Approaches of Shafer-Fink Inequality for Inverse Sine Function
In this paper, we obtain some new natural approaches of Shafer-Fink inequality for arc sine function and the square of arc sine function by using the power series expansions of certain functions, which generalize and strengthen those in the existing literature.
Several inequalities for bounding sums of two (hyperbolic) sine cardinal functions
In the paper, the authors present several inequalities for bounding the sums of two sine cardinal functions and the sums of two hyperbolic sine cardinal functions. These inequalities improve previously-known results.
Min-Max theory and the Willmore conjecture
In 1965, T. J. Willmore conjectured that the integral of the square of the mean curvature of a torus immersed in ℝ3 is at least 2π2. We prove this conjecture using the min-max theory of minimal surfaces.
Absolute multiple sine functions
In this paper we formulate a unified theory of multiple sine functions by using a view point of absolute zeta functions and absolute automorphic forms. Key words: Absolute multiple sine function; primitive multiple sine function; regularized multiple sine function; absolute zeta function; absolute automorphic form.
An integrable deformation of an ellipse of small eccentricity is an ellipse
The classical Birkhoff conjecture claims that the boundary of a strictly convex integrable billiard table is necessarily an ellipse (or a circle as a special case). In this article we show that a version of this conjecture is true for tables bounded by small perturbations of ellipses of small eccentricity.
Meta-analysis of prevalence
Meta-analysis is a method to obtain a weighted average of results from various studies. In addition to pooling effect sizes, meta-analysis can also be used to estimate disease frequencies, such as incidence and prevalence. In this article we present methods for the meta-analysis of prevalence. We discuss the logit and double arcsine transformations to stabilise the variance. We note the special situation of multiple category prevalence, and propose solutions to the problems that arise. We describe the implementation of these methods in the MetaXL software, and present a simulation study and the example of multiple sclerosis from the Global Burden of Disease 2010 project. We conclude that the double arcsine transformation is preferred over the logit, and that the MetaXL implementation of multiple category prevalence is an improvement in the methodology of the meta-analysis of prevalence.
Generalized log sine integrals and the Mordell-Tornheim zeta values
We introduce certain integrals of a product of the Bernoulli polynomials and logarithms of Milnor’s multiple sine functions. It is shown that all the integrals are expressed by the Mordell-Tornheim zeta values at positive integers and that the converse is also true. Moreover, we apply the theory of the integral to obtain various new results for the Mordell-Tornheim zeta values.