Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
72 result(s) for "Single-Domain Antibodies - isolation "
Sort by:
Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants
Since the start of the COVID-19 pandemic, SARS-CoV-2 has caused millions of deaths worldwide. Although a number of vaccines have been deployed, the continual evolution of the receptor-binding domain (RBD) of the virus has challenged their efficacy. In particular, the emerging variants B.1.1.7, B.1.351 and P.1 (first detected in the UK, South Africa and Brazil, respectively) have compromised the efficacy of sera from patients who have recovered from COVID-19 and immunotherapies that have received emergency use authorization 1 – 3 . One potential alternative to avert viral escape is the use of camelid VHHs (variable heavy chain domains of heavy chain antibody (also known as nanobodies)), which can recognize epitopes that are often inaccessible to conventional antibodies 4 . Here, we isolate anti-RBD nanobodies from llamas and from mice that we engineered to produce VHHs cloned from alpacas, dromedaries and Bactrian camels. We identified two groups of highly neutralizing nanobodies. Group 1 circumvents antigenic drift by recognizing an RBD region that is highly conserved in coronaviruses but rarely targeted by human antibodies. Group 2 is almost exclusively focused to the RBD–ACE2 interface and does not neutralize SARS-CoV-2 variants that carry E484K or N501Y substitutions. However, nanobodies in group 2 retain full neutralization activity against these variants when expressed as homotrimers, and—to our knowledge—rival the most potent antibodies against SARS-CoV-2 that have been produced to date. These findings suggest that multivalent nanobodies overcome SARS-CoV-2 mutations through two separate mechanisms: enhanced avidity for the ACE2-binding domain and recognition of conserved epitopes that are largely inaccessible to human antibodies. Therefore, although new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised. Multivalent nanobodies against SARS-CoV-2 from mice engineered to produce camelid nanobodies recognize conserved epitopes that are inaccessible to human antibodies and show promise as a strategy for dealing with viral escape mutations.
An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction
SARS-CoV-2 enters host cells through an interaction between the spike glycoprotein and the angiotensin converting enzyme 2 (ACE2) receptor. Directly preventing this interaction presents an attractive possibility for suppressing SARS-CoV-2 replication. Here, we report the isolation and characterization of an alpaca-derived single domain antibody fragment, Ty1, that specifically targets the receptor binding domain (RBD) of the SARS-CoV-2 spike, directly preventing ACE2 engagement. Ty1 binds the RBD with high affinity, occluding ACE2. A cryo-electron microscopy structure of the bound complex at 2.9 Å resolution reveals that Ty1 binds to an epitope on the RBD accessible in both the ‘up’ and ‘down’ conformations, sterically hindering RBD-ACE2 binding. While fusion to an Fc domain renders Ty1 extremely potent, Ty1 neutralizes SARS-CoV-2 spike pseudovirus as a 12.8 kDa nanobody, which can be expressed in high quantities in bacteria, presenting opportunities for manufacturing at scale. Ty1 is therefore an excellent candidate as an intervention against COVID-19. Here, Hanke et al. immunize an alpaca with SARS-CoV-2 spike protein domains and identify a nanobody that binds the receptor binding domain of spike in both the up and down conformations and sterically hinders ACE2 engagement.
A robust pipeline for rapid production of versatile nanobody repertoires
This paper presents an efficient method for generating nanobodies with high affinity and high specificity. In addition, a collection of nanobodies specific for GFP or mCherry that resulted from this work is described. Nanobodies are single-domain antibodies derived from the variable regions of Camelidae atypical immunoglobulins. They show promise as high-affinity reagents for research, diagnostics and therapeutics owing to their high specificity, small size (∼15 kDa) and straightforward bacterial expression. However, identification of repertoires with sufficiently high affinity has proven time consuming and difficult, hampering nanobody implementation. Our approach generates large repertoires of readily expressible recombinant nanobodies with high affinities and specificities against a given antigen. We demonstrate the efficacy of this approach through the production of large repertoires of nanobodies against two antigens, GFP and mCherry, with K d values into the subnanomolar range. After mapping diverse epitopes on GFP, we were also able to design ultrahigh-affinity dimeric nanobodies with K d values as low as ∼30 pM. The approach presented here is well suited for the routine production of high-affinity capture reagents for various biomedical applications.
Isolation of PCSK9-specific nanobodies from synthetic libraries using a combined protein selection strategy
Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries. This combined process enabled isolation of three unique Nb clones (NbT15, NbT21, and NbT22) that all bound specifically to a target antigen, namely proprotein convertase subtilisin/kexin type 9 (PCSK9) as well as a gain-of-function PCSK9 mutant (D374Y). All three clones bound to PCSK9 and blocked the interaction between the low-density lipoprotein receptor (LDLR) and either wild-type PCSK9 or the D374Y mutant. Overall, our combined protein selection method enables rapid and straightforward identification of potent antigen-specific Nbs in a manner that can be executed in a basic laboratory setting without the need for specialized equipment. We anticipate that our strategy will be a valuable addition to the protein engineering toolkit, allowing development of Nbs or virtually any other synthetic binding protein for a wide range of applications.
Phage-displayed synthetic library and screening platform for nanobody discovery
Nanobodies, single-domain antibodies derived from camelid heavy-chain antibodies, are known for their high affinity, stability, and small size, which make them useful in biological research and therapeutic applications. However, traditional nanobody generation methods rely on camelid immunization, which can be costly and time-consuming, restricting their practical feasibility. In this study, we present a phage-displayed synthetic library for nanobody discovery. To validate this approach, we screened nanobodies targeting various Drosophila secreted proteins. The nanobodies identified were suitable for applications such as immunostaining and immunoblotting, supporting the phage-displayed synthetic library as a versatile platform for nanobody development. To address the challenge of limited accessibility to high-quality synthetic libraries, this library is openly available for non-profit use.
Selection of nanobodies with broad neutralizing potential against primary HIV-1 strains using soluble subtype C gp140 envelope trimers
Broadly neutralizing antibodies (bnAbs) against HIV-1 protect from infection and reduce viral load upon therapeutic applications. However no vaccine was able so far to induce bnAbs demanding their expensive biotechnological production. For clinical applications, nanobodies (VHH) derived from heavy chain only antibodies from Camelidae , may be better suited due to their small size, high solubility/stability and extensive homology to human VH3 genes. Here we selected broadly neutralizing nanobodies by phage display after immunization of dromedaries with different soluble trimeric envelope proteins derived from HIV-1 subtype C. We identified 25 distinct VHH families binding trimeric Env, of which 6 neutralized heterologous primary isolates of various HIV-1 subtypes in a standardized in vitro neutralization assay. The complementary neutralization pattern of two selected VHHs in combination covers 19 out of 21 HIV-1 strains from a standardized panel of epidemiologically relevant HIV-1 subtypes. The CD4 binding site was preferentially targeted by the broadly neutralizing VHHs as determined by competition ELISAs and 3D models of VHH-Env complexes derived from negative stain electron microscopy. The nanobodies identified here are excellent candidates for further preclinical/clinical development for prophylactic and therapeutic applications due to their potency and their complementary neutralization patterns covering the majority of epidemiologically relevant HIV-1 subtypes.
Screening of Single-Domain Antibodies to Adeno-Associated Viruses with Cross-Serotype Specificity and a Wide pH Tolerance
Adeno-associated virus (AAV) vectors are the preferred gene delivery tool in gene therapy owing to their safety, long-term gene expression, broad tissue tropism, and low immunogenicity. Affinity ligands that can bind multiple AAV serotypes endure harsh clean-in-place (CIP) conditions and are critical for industrial-scale purification. However, current ligands lack broad serotype recognition and adequate alkaline stability, which limits their reusability in large-scale manufacturing. In this study, we employed a competitive biopanning strategy to isolate a single-domain antibody (VHH) that simultaneously binds AAV2, AAV8, and AAV9. The VHH retained structural integrity and binding activity after exposure to 0.1 M NaOH, demonstrating robust alkaline stability. Structural modeling revealed that the VHH primarily recognizes the DE loop region of the VP3 capsid protein across the three serotypes, explaining its cross-serotype reactivity. Affinity chromatography using the VHH yielded infectious AAV particles, confirming its potential for downstream processing. This strategy provides a versatile platform for developing high-performance AAV affinity ligands and may be extended to other viral vector systems.
A nanobody suite for yeast scaffold nucleoporins provides details of the nuclear pore complex structure
Nuclear pore complexes (NPCs) are the main conduits for molecular exchange across the nuclear envelope. The NPC is a modular assembly of ~500 individual proteins, called nucleoporins or nups. Most scaffolding nups are organized in two multimeric subcomplexes, the Nup84 or Y complex and the Nic96 or inner ring complex. Working in S. cerevisiae , and to study the assembly of these two essential subcomplexes, we here develop a set of twelve nanobodies that recognize seven constituent nucleoporins of the Y and Nic96 complexes. These nanobodies all bind specifically and with high affinity. We present structures of several nup-nanobody complexes, revealing their binding sites. Additionally, constitutive expression of the nanobody suite in S. cerevisiae detect accessible and obstructed surfaces of the Y complex and Nic96 within the NPC. Overall, this suite of nanobodies provides a unique and versatile toolkit for the study of the NPC. Characterizing the assembly of the nuclear pore complex (NPC) remains challenging. Here, the authors develop a set of nanobodies that recognize seven constituent nucleoporins, study their binding characteristics, and apply them to probe accessible and obstructed NPC surfaces in yeast.
A phage-displayed nanobody-based competitive immunoassay for the detection of African swine fever virus antibodies
African swine fever (ASF) is a highly infectious and devastating disease that poses a significant threat to the global swine industry. The rapid spread of ASF and its ongoing pandemics continue to impact pig farming worldwide. The absence of an effective vaccine, coupled with the complexity of the African swine fever virus (ASFV), makes the control and eradication of ASF a formidable challenge. Nanobodies, derived from camelids, have emerged as promising alternatives to conventional monoclonal antibodies, offering distinct advantages in various biological applications. In this study, specific nanobodies targeting the ASFV K205R protein were selected from a phage-displayed immune library. Ten individual nanobodies were isolated based on their complementary determining regions (CDRs), and four were found to bind to the naive K205R protein of ASFV. After evaluation, nanobody VHH1 was selected for the development of a competitive enzyme-linked immunosorbent assay (ELISA) for ASFV antibody detection. The assay was optimized for various reaction conditions, and the cut-off value was determined to be 26.85%, with diagnostic sensitivity and specificity of 97.52% and 97.48%, respectively. No cross-reactivity was observed with sera from pigs infected with other swine viruses, and the assay exhibited a detection sensitivity of 1:128. Comparative analysis of clinical samples showed a high concordance rate (98.98%) between the nanobody-based and monoclonal antibody-based ELISAs (Mab-cELISA). In conclusion, this study presents a phage-displayed nanobody-based competitive ELISA for the detection of ASFV antibodies, which could be valuable for ASF sero-surveillance. Additionally, the K205R-specific nanobodies identified here may be adapted for other biological or biomedical applications.
Characterization of novel CD19-specific VHHs isolated from a camelid immune library by phage display
Background Monoclonal antibody (mAb)-based immunotherapies have achieved promising outcomes in the treatment of immunological and oncological indications. CD19 is considered one of the most qualified antigens in the treatment of B-cell neoplasms. VHHs (nanobodies) are known for their physicochemical advantages over conventional mAbs rendering them suitable therapeutics and diagnostic tools. Herein, we aimed to isolate CD19-specific VHHs from a novel immune library using phage display. Methods An immune VHH gene library was constructed. Using phage display and after five biopanning rounds, two monoclonal CD19-specific VHHs were isolated. The selected VHHs were expressed, purified, and characterized in terms of their affinity, specificity, sensitivity, and ability to target CD19-positive cell lines. Moreover, in silico analyses were employed for further characterization. Results A VHH library was developed, and because the outputs of the 4 th biopanning round exhibited the most favorable characteristics, a panel of random VHHs was selected from them. Ultimately, two of the most favorable VHHs were selected and DNA sequenced (designated as GR37 and GR41). Precise experiments indicated that GR37 and GR41 exhibited considerable specificity, sensitivity, and affinity (1.15 × 10 7 M −1 and 2.08 × 10 7 M −1 , respectively) to CD19. Flow cytometric analyses revealed that GR37 and GR41 could bind CD19 on the surface of cell lines expressing the antigen. Moreover, in silico experiments predicted that both VHHs target epitopes that are distinct from that targeted by the CD19-specific single-chain variable fragment (scFv) FMC63. Conclusion The selected VHHs can be used as potential targeting tools for the development of CD19-based immunotherapeutics.