Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
821
result(s) for
"Skin cancer detection"
Sort by:
A robust deep learning framework for multiclass skin cancer classification
2025
Skin cancer represents a significant global health concern, where early and precise diagnosis plays a pivotal role in improving treatment efficacy and patient survival rates. Nonetheless, the inherent visual similarities between benign and malignant lesions pose substantial challenges to accurate classification. To overcome these obstacles, this study proposes an innovative hybrid deep learning model that combines ConvNeXtV2 blocks and separable self-attention mechanisms, tailored to enhance feature extraction and optimize classification performance. The inclusion of ConvNeXtV2 blocks in the initial two stages is driven by their ability to effectively capture fine-grained local features and subtle patterns, which are critical for distinguishing between visually similar lesion types. Meanwhile, the adoption of separable self-attention in the later stages allows the model to selectively prioritize diagnostically relevant regions while minimizing computational complexity, addressing the inefficiencies often associated with traditional self-attention mechanisms. The model was comprehensively trained and validated on the ISIC 2019 dataset, which includes eight distinct skin lesion categories. Advanced methodologies such as data augmentation and transfer learning were employed to further enhance model robustness and reliability. The proposed architecture achieved exceptional performance metrics, with 93.48% accuracy, 93.24% precision, 90.70% recall, and a 91.82% F1-score, outperforming over ten Convolutional Neural Network (CNN) based and over ten Vision Transformer (ViT) based models tested under comparable conditions. Despite its robust performance, the model maintains a compact design with only 21.92 million parameters, making it highly efficient and suitable for model deployment. The Proposed Model demonstrates exceptional accuracy and generalizability across diverse skin lesion classes, establishing a reliable framework for early and accurate skin cancer diagnosis in clinical practice.
Journal Article
A DE-ANN Inspired Skin Cancer Detection Approach Using Fuzzy C-Means Clustering
by
Deep Vikas
,
Sharma, Purushottam
,
AlGhamdi Rayed
in
Accuracy
,
Artificial neural networks
,
Cancer
2020
As per recent developments in medical science, the skin cancer is considered as one of the common type disease in human body. Although the presence of melanoma is viewed as a form of cancer, it is challenging to predict it. If melanoma or other skin diseases are identified in the early stages, prognosis can then be successfully achieved to cure them. For this, medical imaging science plays an essential role in detecting such types of skin lesions quickly and accurately. The application of our approaches is to improve skin cancer detection accuracy in medical imaging and further, can be automated using electronic devices such as mobile phones etc. In the proposed paper, an improved strategy to detect three type of skin cancers in early stages are suggested. The considered input is a skin lesion image which by using the proposed method, the system would classify it into cancerous or non-cancerous type of skin. The image segmentation is implemented using fuzzy C-means clustering to separate homogeneous image regions. The preprocessing is done using different filters to enhance the image attributes while the other features are assessed by implementing rgb color-space, Local Binary Pattern (LBP) and GLCM methods altogether. Further, for classification, artificial neural network (ANN) is trained using differential evolution (DE) algorithm. Various features are accurately estimated to achieve better results using skin cancer image datasets namely HAM10000 and PH2. The novelty of the work suggests that DE-ANN is best compared among other traditional classifiers in terms of detection accuracy as discussed in result section of this paper. The simulated result shows that the proposed technique effectually detects skin cancer and produces an accuracy of 97.4%. The results are highly accurate compare to other traditional approaches in the same domain.
Journal Article
An intelligent framework for skin cancer detection and classification using fusion of Squeeze-Excitation-DenseNet with Metaheuristic-driven ensemble deep learning models
by
Dorathi Jayaseeli, J. D.
,
Patibandla, R. S. M. Lakshmi
,
Briskilal, J
in
639/705/117
,
639/705/258
,
Algorithms
2025
Skin cancer is the most dominant and critical method of cancer, which arises all over the world. Its damaging effects can range from disfigurement to major medical expenditures and even death if not analyzed and preserved timely. Conventional models of skin cancer recognition require a complete physical examination by a specialist, which is time-wasting in a few cases. Computer-aided medicinal analytical methods have gained massive popularity due to their efficiency and effectiveness. This model can assist dermatologists in the initial recognition of skin cancer, which is significant for early diagnosis. An automatic classification model utilizing deep learning (DL) can help doctors perceive the kind of skin lesion and improve the patient’s health. The classification of skin cancer is one of the hot topics in the research field, along with the development of DL structure. This manuscript designs and develops a Detection of Skin Cancer Using an Ensemble Deep Learning Model and Gray Wolf Optimization (DSC-EDLMGWO) method. The proposed DSC-EDLMGWO model relies on the recognition and classification of skin cancer in biomedical imaging. The presented DSC-EDLMGWO model initially involves the image preprocessing stage at two levels: contract enhancement using the CLAHE method and noise removal using the wiener filter (WF) model. Furthermore, the proposed DSC-EDLMGWO model utilizes the SE-DenseNet method, which is the fusion of the squeeze-and-excitation (SE) module and DenseNet to extract features. For the classification process, the ensemble of DL models, namely the long short-term memory (LSTM) technique, extreme learning machine (ELM) model, and stacked sparse denoising autoencoder (SSDA) method, is employed. Finally, the gray wolf optimization (GWO) method optimally adjusts the ensemble DL models’ hyperparameter values, resulting in more excellent classification performance. The effectiveness of the DSC-EDLMGWO approach is evaluated using a benchmark image database, with outcomes measured across various performance metrics. The experimental validation of the DSC-EDLMGWO approach portrayed a superior accuracy value of 98.38% and 98.17% under HAM10000 and ISIC datasets across other techniques.
Journal Article
Enhancing Skin Cancer Diagnosis Using Swin Transformer with Hybrid Shifted Window-Based Multi-head Self-attention and SwiGLU-Based MLP
2024
Skin cancer is one of the most frequently occurring cancers worldwide, and early detection is crucial for effective treatment. Dermatologists often face challenges such as heavy data demands, potential human errors, and strict time limits, which can negatively affect diagnostic outcomes. Deep learning–based diagnostic systems offer quick, accurate testing and enhanced research capabilities, providing significant support to dermatologists. In this study, we enhanced the Swin Transformer architecture by implementing the hybrid shifted window-based multi-head self-attention (HSW-MSA) in place of the conventional shifted window-based multi-head self-attention (SW-MSA). This adjustment enables the model to more efficiently process areas of skin cancer overlap, capture finer details, and manage long-range dependencies, while maintaining memory usage and computational efficiency during training. Additionally, the study replaces the standard multi-layer perceptron (MLP) in the Swin Transformer with a SwiGLU-based MLP, an upgraded version of the gated linear unit (GLU) module, to achieve higher accuracy, faster training speeds, and better parameter efficiency. The modified Swin model-base was evaluated using the publicly accessible ISIC 2019 skin dataset with eight classes and was compared against popular convolutional neural networks (CNNs) and cutting-edge vision transformer (ViT) models. In an exhaustive assessment on the unseen test dataset, the proposed Swin-Base model demonstrated exceptional performance, achieving an accuracy of 89.36%, a recall of 85.13%, a precision of 88.22%, and an F1-score of 86.65%, surpassing all previously reported research and deep learning models documented in the literature.
Journal Article
Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning
2022
Cancer remains a deadly disease. We developed a lightweight, accurate, general-purpose deep learning algorithm for skin cancer classification. Squeeze-MNet combines a Squeeze algorithm for digital hair removal during preprocessing and a MobileNet deep learning model with predefined weights. The Squeeze algorithm extracts important image features from the image, and the black-hat filter operation removes noise. The MobileNet model (with a dense neural network) was developed using the International Skin Imaging Collaboration (ISIC) dataset to fine-tune the model. The proposed model is lightweight; the prototype was tested on a Raspberry Pi 4 Internet of Things device with a Neo pixel 8-bit LED ring; a medical doctor validated the device. The average precision (AP) for benign and malignant diagnoses was 99.76% and 98.02%, respectively. Using our approach, the required dataset size decreased by 66%. The hair removal algorithm increased the accuracy of skin cancer detection to 99.36% with the ISIC dataset. The area under the receiver operating curve was 98.9%.
Journal Article
SkinEHDLF a hybrid deep learning approach for accurate skin cancer classification in complex systems
2025
Skin cancer represents a significant global public health issue, and prompt and precise detection is essential for effective treatment. This study introduces SkinEHDLF, an innovative deep-learning model that enhances skin cancer classification. SkinEHDLF utilizes the advantages of several advanced models, i.e., ConvNeXt, EfficientNetV2, and Swin Transformer, while integrating an adaptive attention-based feature fusion mechanism to enhance the synthesis of acquired features. This hybrid methodology combines ConvNeXt’s proficient feature extraction capabilities, EfficientNetV2’s scalability, and Swin Transformer’s long-range attention mechanisms, resulting in a highly accurate and dependable model. The adaptive attention mechanism dynamically optimizes feature fusion, enabling the model to focus on the most relevant information, enhancing accuracy and reducing false positives. We trained and evaluated SkinEHDLF using the ISIC 2024 dataset, which comprises 401,059 skin lesion images extracted from 3D total-body photography. The dataset is divided into three categories: melanoma, benign lesions, and noncancerous skin anomalies. The findings indicate the superiority of SkinEHDLF compared to current models. In binary skin cancer classification, SkinEHDLF surpassed baseline models, achieving an AUROC of 99.8% and an accuracy of 98.76%. The model attained 98.6% accuracy, 97.9% precision, 97.3% recall, and 99.7% AUROC across all lesion categories in multi-class classification. SkinEHDLF demonstrates a 7.9% enhancement in accuracy and a 28% decrease in false positives, outperforming leading models including ResNet-50, EfficientNet-B3, ViT-B16, and hybrid methodologies such as ResNet-50 + EfficientNet and ViT + CNN, thereby positioning itself as a more precise and reliable solution for automated skin cancer detection. These findings underscore SkinEHDLF’s capacity to transform dermatological diagnostics by providing a scalable and accurate method for classifying skin cancer.
Journal Article
Hybrid Deep Learning Models for Skin Lesion Classification: A Comparative Review and Future Directions
2025
The accurate and early characterization of skin lesions is crucial to the timely intervention in the diagnosis of skin cancers, especially melanoma. Due to the penetration of artificial intelligence (AI) in medical imaging, deep learning techniques particularly hybrid models that integrate Convolutional Neural Networks (CNNs) with attention mechanisms, transformers and sequential networks such as long short term memory (LSTM) have demonstrated promising progress for improving classification performance. In this paper, we provide a thorough survey on recent hybrid deep learning architectures proposed for skin lesion classification purpose with a focus on methods, employed datasets and comparative results. We perform a systematic review of key works to expose predominant challenges, such as class imbalance, low interpretability and restricted generalisability across lesion types. We also point out what need to be improved and introduce a new concept hybrid model combining EfficientNet-B6 and LSTM for this requirement. Comparative analysis if the existing benchmark comparisons are provided to justify the divergence. Recommendations for robust and interpretable AI system in dermatologia have been discussed at the end of the paper.
Journal Article
Identification of Skin Lesions by Snapshot Hyperspectral Imaging
by
Nguyen, Hong-Thai
,
Wang, Hsiang-Chen
,
Liu, Ping-Hung
in
Accuracy
,
Algorithms
,
Artificial intelligence
2024
This study pioneers the application of artificial intelligence (AI) and hyperspectral imaging (HSI) in the diagnosis of skin cancer lesions, particularly focusing on Mycosis fungoides (MF) and its differentiation from psoriasis (PsO) and atopic dermatitis (AD). By utilizing a comprehensive dataset of 1659 skin images, including cases of MF, PsO, AD, and normal skin, a novel multi-frame AI algorithm was used for computer-aided diagnosis. The automatic segmentation and classification of skin lesions were further explored using advanced techniques, such as U-Net Attention models and XGBoost algorithms, transforming images from the color space to the spectral domain. The potential of AI and HSI in dermatological diagnostics was underscored, offering a noninvasive, efficient, and accurate alternative to traditional methods. The findings are particularly crucial for early-stage invasive lesion detection in MF, showcasing the model’s robust performance in segmenting and classifying lesions and its superior predictive accuracy validated through k-fold cross-validation. The model attained its optimal performance with a k-fold cross-validation value of 7, achieving a sensitivity of 90.72%, a specificity of 96.76%, an F1-score of 90.08%, and an ROC-AUC of 0.9351. This study marks a substantial advancement in dermatological diagnostics, thereby contributing significantly to the early and precise identification of skin malignancies and inflammatory conditions.
Journal Article
Automatic Skin Cancer Detection Using Clinical Images: A Comprehensive Review
by
Garcia, Rafael
,
Nazari, Sana
in
Artificial intelligence
,
automated diagnosis of pigmented skin lesions (PSLs), computer-aided diagnosis
,
Automation
2023
Skin cancer has become increasingly common over the past decade, with melanoma being the most aggressive type. Hence, early detection of skin cancer and melanoma is essential in dermatology. Computational methods can be a valuable tool for assisting dermatologists in identifying skin cancer. Most research in machine learning for skin cancer detection has focused on dermoscopy images due to the existence of larger image datasets. However, general practitioners typically do not have access to a dermoscope and must rely on naked-eye examinations or standard clinical images. By using standard, off-the-shelf cameras to detect high-risk moles, machine learning has also proven to be an effective tool. The objective of this paper is to provide a comprehensive review of image-processing techniques for skin cancer detection using clinical images. In this study, we evaluate 51 state-of-the-art articles that have used machine learning methods to detect skin cancer over the past decade, focusing on clinical datasets. Even though several studies have been conducted in this field, there are still few publicly available clinical datasets with sufficient data that can be used as a benchmark, especially when compared to the existing dermoscopy databases. In addition, we observed that the available artifact removal approaches are not quite adequate in some cases and may also have a negative impact on the models. Moreover, the majority of the reviewed articles are working with single-lesion images and do not consider typical mole patterns and temporal changes in the lesions of each patient.
Journal Article
Dermoscopy and reflectance confocal microscopy‐augmented characterization of pigmented micro‐basal cell carcinoma (less than 2 mm diameter)
by
Foltz, Emilie
,
Ludzik, Joanna
,
Witkowski, Alexander
in
basal cell
,
Basal cell carcinoma
,
Biopsy
2023
Background Basal cell carcinoma (BCC) is the most common skin cancer, accounting for approximately 80% of nonmelanoma skin cancer diagnoses each year. Among other factors, the staging of BCC is influenced by its measured diameter. Stage 1 BCC is defined as a lesion measuring 2 cm across or less. Of note, there have been increasing publications reporting features of “small‐sized” BCCs, which can present smaller than 1 mm. However, few of these studies have characterized features of pigmented small‐sized BCC. The application of in‐vivo imaging such as dermoscopy and reflectance confocal microscopy (RCM) allows for the non‐invasive distinction of these lesions from benign and malignant melanocytic neoplasms, thereby reducing unnecessary biopsies. Methods Within one year, three patients presented to Oregon Health and Science University's dermatology clinic with pigmented lesions of concern measuring less than 2 mm that were histologically confirmed as pigmented BCC. We sought to characterize the features of these lesions in a case series with the non‐invasive imaging modalities of dermoscopy and RCM. Results All cases presented clinically as a small, brown, macule on the face. Each of the three cases exhibited differing features on dermoscopy. With the application of RCM, we were able to visualize characteristic BCC features, prompting removal by shave biopsy. Conclusion To our knowledge, no other study has reported dermoscopic and RCM features of a cohort of pigmented BCCs 2 mm in diameter or smaller. We propose to define BCCs of this size as micro‐BCCs. The variability of dermoscopic findings observed in our study, combined with the small size of these pigmented lesions, shows the utility of RCM as a non‐invasive diagnostic tool for pigmented micro‐BCCs.
Journal Article