Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
283 result(s) for "Skp2 protein"
Sort by:
Cell cycle regulation: p53-p21-RB signaling
The retinoblastoma protein RB and the transcription factor p53 are central tumor suppressors. They are often found inactivated in various tumor types. Both proteins play central roles in regulating the cell division cycle. RB forms complexes with the E2F family of transcription factors and downregulates numerous genes. Among the RB-E2F target genes, a large number code for key cell cycle regulators. Their transcriptional repression by the RB-E2F complex is released through phosphorylation of RB, leading to expression of the cell cycle regulators. The release from repression can be prevented by the cyclin-dependent kinase inhibitor p21/CDKN1A. The CDKN1A gene is transcriptionally activated by p53. Taken together, these elements constitute the p53-p21-RB signaling pathway. Following activation of p53, for example by viral infection or induction of DNA damage, p21 expression is upregulated. High levels of p21 then result in RB-E2F complex formation and downregulation of a large number of cell cycle genes. Thus, p53-dependent transcriptional repression is indirect. The reduced expression of the many regulators leads to cell cycle arrest. Examination of the p53-p21-RB targets and genes controlled by the related p53-p21-DREAM signaling pathway reveals that there is a large overlap of the two groups. Mechanistically this can be explained by replacing RB-E2F complexes with the DREAM transcriptional repressor complex at E2F sites in target promoters. In contrast to RB-E2F, DREAM can downregulate genes also through CHR transcription factor binding sites. This results in a distinct gene set controlled by p53-p21-DREAM signaling independent of RB-E2F. Furthermore, RB has non-canonical functions without binding to E2F and DNA. Such a role of RB supporting DREAM formation may be exerted by the RB-SKP2-p27-cyclin A/E-CDK2-p130-DREAM link. In the current synopsis, the mechanism of regulation by p53-p21-RB signaling is assessed and the overlap with p53-p21-DREAM signaling is examined.
Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation
Most triple-negative breast cancer (TNBC) patients fail to respond to T cell-mediated immunotherapies. Unfortunately, the molecular determinants are still poorly understood. Breast cancer is the disease genetically linked to a deficiency in autophagy. Here, we show that autophagy defects in TNBC cells inhibit T cell-mediated tumour killing in vitro and in vivo. Mechanistically, we identify Tenascin-C as a candidate for autophagy deficiency-mediated immunosuppression, in which Tenascin-C is Lys63-ubiquitinated by Skp2, particularly at Lys942 and Lys1882, thus promoting its recognition by p62 and leading to its selective autophagic degradation. High Tenascin-C expression is associated with poor prognosis and inversely correlated with LC3B expression and CD8 + T cells in TNBC patients. More importantly, inhibition of Tenascin-C in autophagy-impaired TNBC cells sensitizes T cell-mediated tumour killing and improves antitumour effects of single anti-PD1/PDL1 therapy. Our results provide a potential strategy for targeting TNBC with the combination of Tenascin-C blockade and immune checkpoint inhibitors. T cell mediated therapies have proven largely unsuccessful in triple-negative breast cancer (TNBC). Here, the authors show that autophagy is reduced in TNBC, which results in an increase in Tenascin C and reduced activation of tumour infiltrating lymphocytes.
SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection
Autophagy is an essential cellular process affecting virus infections and other diseases and Beclin1 (BECN1) is one of its key regulators. Here, we identified S-phase kinase-associated protein 2 (SKP2) as E3 ligase that executes lysine-48-linked poly-ubiquitination of BECN1, thus promoting its proteasomal degradation. SKP2 activity is regulated by phosphorylation in a hetero-complex involving FKBP51, PHLPP, AKT1, and BECN1. Genetic or pharmacological inhibition of SKP2 decreases BECN1 ubiquitination, decreases BECN1 degradation and enhances autophagic flux. Middle East respiratory syndrome coronavirus (MERS-CoV) multiplication results in reduced BECN1 levels and blocks the fusion of autophagosomes and lysosomes. Inhibitors of SKP2 not only enhance autophagy but also reduce the replication of MERS-CoV up to 28,000-fold. The SKP2-BECN1 link constitutes a promising target for host-directed antiviral drugs and possibly other autophagy-sensitive conditions. Here, Gassen et al . show that S-phase kinase-associated protein 2 (SKP2) is responsible for lysine-48-linked poly-ubiquitination of beclin 1, resulting in its proteasomal degradation, and that inhibition of SKP2 enhances autophagy and reduces replication of MERS coronavirus.
SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis
The serine/threonine kinase Akt plays a central role in cell proliferation, survival and metabolism, and its hyperactivation is linked to cancer progression. Here we report that Akt undergoes K64 methylation by SETDB1, which is crucial for cell membrane recruitment, phosphorylation and activation of Akt following growth factor stimulation. Furthermore, we reveal an adaptor function of histone demethylase JMJD2A, which is important for recognizing Akt K64 methylation and recruits E3 ligase TRAF6 and Skp2-SCF to the Akt complex, independently of its demethylase activity, thereby initiating K63-linked ubiquitination, cell membrane recruitment and activation of Akt. Notably, the cancer-associated Akt mutant E17K displays enhanced K64 methylation, leading to its hyper-phosphorylation and activation. SETDB1-mediated Akt K64 methylation is upregulated and correlated with Akt hyperactivation in non-small-cell lung carcinoma (NSCLC), promotes tumour development and predicts poor outcome. Collectively, these findings reveal complicated layers of Akt activation regulation coordinated by SETDB1-mediated Akt K64 methylation to drive tumorigenesis. Wang et al. show that Akt methylation by SETDB1 is recognized by demethylase JMJD2A, which then recruits E3 ligases to induce K63-linked Akt ubiquitination, leading to Akt activation and tumorigenesis.
SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity
Dysregulation of YAP localization and activity is associated with pathological conditions such as cancer. Although activation of the Hippo phosphorylation cascade is known to cause cytoplasmic retention and inactivation of YAP, emerging evidence suggests that YAP can be regulated in a Hippo-independent manner. Here, we report that YAP is subject to non-proteolytic, K63-linked polyubiquitination by the SCF SKP2 E3 ligase complex (SKP2), which is reversed by the deubiquitinase OTUD1. The non-proteolytic ubiquitination of YAP enhances its interaction with its nuclear binding partner TEAD, thereby inducing YAP’s nuclear localization, transcriptional activity, and growth-promoting function. Independently of Hippo signaling, mutation of YAP’s K63-linkage specific ubiquitination sites K321 and K497, depletion of SKP2, or overexpression of OTUD1 retains YAP in the cytoplasm and inhibits its activity. Conversely, overexpression of SKP2 or loss of OTUD1 leads to nuclear localization and activation of YAP. Altogether, our study sheds light on the ubiquitination-mediated, Hippo-independent regulation of YAP. Regulation of Yes-associated protein (YAP) through the Hippo pathway is well established, but its Hippo-independent regulation remains to be elucidated. Here, the authors show that non-proteolytic ubiquitination presents another means of YAP regulation, promoting its nuclear localization and activity.
The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance
PI3K/Akt signaling is activated in cancers and governs tumor initiation and progression, but how Akt is activated under diverse stresses is poorly understood. Here we identify AMPK as an essential regulator for Akt activation by various stresses. Surprisingly, AMPK is also activated by growth factor EGF through Ca2+/Calmodulin-dependent kinase and is essential for EGF-mediated Akt activation and biological functions. AMPK phosphorylates Skp2 at S256 and promotes the integrity and E3 ligase activity of Skp2 SCF complex leading to K63-linked ubiquitination and activation of Akt and subsequent oncogenic processes. Importantly, AMPK-mediated Skp2 S256 phosphorylation promotes breast cancer progression in mouse tumor models, correlates with Akt and AMPK activation in breast cancer patients, and predicts poor survival outcomes. Finally, targeting AMPK-mediated Skp2 S256 phosphorylation sensitizes cells to anti-EGF receptor targeted therapy. Our study sheds light on how stress and EGF induce Akt activation and new mechanisms for AMPK-mediated oncogenesis and drug resistance. How Akt pathway is activated under stress is poorly understood. Here, the authors demonstrate the crucial role of AMPK for cellular stresses and growth factors- mediated Akt activation through a mechanism involving the E3 ubiquitin ligase Skp2 and Cullin-1.
Suppression of Skp2 contributes to sepsis-induced acute lung injury by enhancing ferroptosis through the ubiquitination of SLC3A2
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. The inflammatory cytokine storm causes systemic organ damage, especially acute lung injury in sepsis. In this study, we found that the expression of S-phase kinase-associated protein 2 (Skp2) was significantly decreased in sepsis-induced acute lung injury (ALI). Sepsis activated the MEK/ERK pathway and inhibited Skp2 expression in the pulmonary epithelium, resulting in a reduction of K48 ubiquitination of solute carrier family 3 member 2 (SLC3A2), thereby impairing its membrane localization and cystine/glutamate exchange function. Consequently, the dysregulated intracellular redox reactions induced ferroptosis in pulmonary epithelial cells, leading to lung injury. Finally, we demonstrated that intravenous administration of Skp2 mRNA-encapsulating lipid nanoparticles (LNPs) inhibited ferroptosis in the pulmonary epithelium and alleviated lung injury in septic mice. Taken together, these data provide an innovative understanding of the underlying mechanisms of sepsis-induced ALI and a promising therapeutic strategy for sepsis.
Kindlin-2 haploinsufficiency protects against fatty liver by targeting Foxo1 in mice
Nonalcoholic fatty liver disease (NAFLD) affects a large population with incompletely defined mechanism(s). Here we report that Kindlin-2 is dramatically up-regulated in livers in obese mice and patients with NAFLD. Kindlin-2 haploinsufficiency in hepatocytes ameliorates high-fat diet (HFD)-induced NAFLD and glucose intolerance without affecting energy metabolism in mice. In contrast, Kindlin-2 overexpression in liver exacerbates NAFLD and promotes lipid metabolism disorder and inflammation in hepatocytes. A C-terminal region (aa 570-680) of Kindlin-2 binds to and stabilizes Foxo1 by inhibiting its ubiquitination and degradation through the Skp2 E3 ligase. Kindlin-2 deficiency increases Foxo1 phosphorylation at Ser256, which favors its ubiquitination by Skp2. Thus, Kindllin-2 loss down-regulates Foxo1 protein in hepatocytes. Foxo1 overexpression in liver abrogates the ameliorating effect of Kindlin-2 haploinsufficiency on NAFLD in mice. Finally, AAV8-mediated shRNA knockdown of Kindlin-2 in liver alleviates NAFLD in obese mice. Collectively, we demonstrate that Kindlin-2 insufficiency protects against fatty liver by promoting Foxo1 degradation. Here, the authors show that expression of kindlin-2 is increased in patients with nonalcoholic fatty liver disease (NAFLD). In mouse models, specific deletion of kindlin-2 in liver ameliorates, while its overexpression exacerbates, NAFLD by modulating Foxo1 in hepatocytes.
YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators
The N6-methyladenosine (m6A) modification regulates mRNA stability and translation. Here, we show that transcriptomic m6A modification can be dynamic and the m6A reader protein YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) promotes mRNA decay during cell cycle. Depletion of YTHDF2 in HeLa cells leads to the delay of mitotic entry due to overaccumulation of negative regulators of cell cycle such as Wee1-like protein kinase (WEE1). We demonstrate that WEE1 transcripts contain m6A modification, which promotes their decay through YTHDF2. Moreover, we found that YTHDF2 protein stability is dependent on cyclin-dependent kinase 1 (CDK1) activity. Thus, CDK1, YTHDF2, and WEE1 form a feedforward regulatory loop to promote mitotic entry. We further identified Cullin 1 (CUL1), Cullin 4A (CUL4A), damaged DNA-binding protein 1 (DDB1), and S-phase kinase-associated protein 2 (SKP2) as components of E3 ubiquitin ligase complexes that mediate YTHDF2 proteolysis. Our study provides insights into how cell cycle mediators modulate transcriptomic m6A modification, which in turn regulates the cell cycle.
Targeting of SKP2 to combat drug resistance in multiple myeloma
Multiple myeloma (MM) is an incurable plasma cell malignancy in which drug resistance remains a significant limitation to treatment. SKP2, the substrate-recognition component of the SCF-SKP2 ubiquitin-protein ligase complex, plays a critical role in the progression of various cancers, including MM. Targeting SKP2 as a therapeutic strategy offers a promising avenue for combating drug resistance in myeloma. Here, we show that SKP2 expression increases as the disease progresses from pre-myeloma to newly diagnosed and relapsed stages. Gene set enrichment analysis (GSEA) and immunoblotting further revealed that SKP2 inhibition by the preclinical chemical inhibitor SkpinC1 leads to decreased STAT3 inflammatory signalling and c-MYC expression in myeloma cells. When tested in SKP2 -overexpressing cells, SkpinC1 retained the ability to reduce activated STAT3, c-MYC, and c-MAF protein levels to impair cell growth and induce apoptosis. Furthermore, SkpinC1 synergistically enhanced the sensitivity of patient myeloma samples to bortezomib. Taken together, these findings underline the potential of SKP2 inhibition to overcome drug resistance in MM.