Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
499 result(s) for "Sleep Disorders, Circadian Rhythm - genetics"
Sort by:
Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences, and Countermeasures
Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important.
Human circadian variations
Circadian rhythms, present in most phyla across life, are biological oscillations occurring on a daily cycle. Since the discovery of their molecular foundations in model organisms, many inputs that modify this tightly controlled system in humans have been identified. Polygenic variations and environmental factors influence each person's circadian rhythm, contributing to the trait known as chronotype, which manifests as the degree of morning or evening preference in an individual. Despite normal variation in chronotype, much of society operates on a \"one size fits all\" schedule that can be difficult to adjust to, especially for certain individuals whose endogenous circadian phase is extremely advanced or delayed. This is a public health concern, as phase misalignment in humans is associated with a number of adverse health outcomes. Additionally, modern technology (such as electric lights and computer, tablet, and phone screens that emit blue light) and lifestyles (such as shift or irregular work schedules) are disrupting circadian consistency in an increasing number of people. Though medical and lifestyle interventions can alleviate some of these issues, growing research on endogenous circadian variability and sensitivity suggests that broader social changes may be necessary to minimize the impact of circadian misalignment on health.
Genomics of circadian rhythms in health and disease
Circadian clocks are endogenous oscillators that control 24-h physiological and behavioral processes. The central circadian clock exerts control over myriad aspects of mammalian physiology, including the regulation of sleep, metabolism, and the immune system. Here, we review advances in understanding the genetic regulation of sleep through the circadian system, as well as the impact of dysregulated gene expression on metabolic function. We also review recent studies that have begun to unravel the circadian clock’s role in controlling the cardiovascular and nervous systems, gut microbiota, cancer, and aging. Such circadian control of these systems relies, in part, on transcriptional regulation, with recent evidence for genome-wide regulation of the clock through circadian chromosome organization. These novel insights into the genomic regulation of human physiology provide opportunities for the discovery of improved treatment strategies and new understanding of the biological underpinnings of human disease.
A PERIOD3 variant causes a circadian phenotype and is associated with a seasonal mood trait
In humans, the connection between sleep and mood has long been recognized, although direct molecular evidence is lacking. We identified two rare variants in the circadian clock gene PERIOD3 (PER3-P415A/H417R) in humans with familial advanced sleep phase accompanied by higher Beck Depression Inventory and seasonality scores. hPER3-P415A/H417R transgenic mice showed an altered circadian period under constant light and exhibited phase shifts of the sleep-wake cycle in a short light period (photoperiod) paradigm. Molecular characterization revealed that the rare variants destabilized PER3 and failed to stabilize PERIOD1/2 proteins, which play critical roles in circadian timing. Although hPER3-P415A/H417R-Tg mice showed a mild depression-like phenotype, Per3 knockout mice demonstrated consistent depression-like behavior, particularly when studied under a short photoperiod, supporting a possible role for PER3 in mood regulation. These findings suggest that PER3 may be a nexus for sleep and mood regulation while fine-tuning these processes to adapt to seasonal changes.
Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome
Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work.
Screening of Clock Gene Polymorphisms Demonstrates Association of a PER3 Polymorphism with Morningness–Eveningness Preference and Circadian Rhythm Sleep Disorder
A system of self-sustained biological clocks controls the 24-h rhythms of behavioral and physiological processes such as the sleep–wake cycle. The circadian clock system is regulated by transcriptional and translational negative feedback loops of multiple clock genes. Polymorphisms in circadian clock genes have been associated with morningness–eveningness (diurnal) preference, familial advanced sleep phase type (ASPT) and delayed sleep phase type (DSPT). We genotyped single-nucleotide polymorphisms in circadian clock genes in 182 DSPT individuals, 67 free-running type (FRT) individuals and 925 controls. The clock gene polymorphisms were tested for associations with diurnal preference and circadian rhythm sleep disorder (CRSD) phenotypes. The PER3 polymorphism (rs228697) was significantly associated with diurnal preference and the FRT phenotype. The minor allele of rs228697 was more prevalent in evening types than in morning types (sex-adjusted odds ratio (OR), 2.483, Bonferroni-corrected P = 0.012) and in FRT individuals compared with the controls (age- and sex-adjusted OR, 2.021, permutated P = 0.017). Our findings support the notion that PER3 polymorphisms could be a potential genetic marker for an individual's circadian and sleep phenotypes.
Delayed sleep-onset and biological age: late sleep-onset is associated with shorter telomere length
We evaluated the relationship between leukocyte telomere length (LTL) and sleep duration, insomnia symptoms, and circadian rhythm, to test whether sleep and chronobiological dysregulations are associated with cellular aging. Data from the Netherlands Study of Depression and Anxiety (N = 2,936) were used at two waves 6 years apart, to measure LTL. Telomeres shorten during the life span and are important biomarkers for cellular aging. LTL was assessed by qualitative polymerase chain reaction and converted into base pair number. Sleep parameters were: sleep duration and insomnia symptoms from the Insomnia Rating Scale. Circadian rhythm variables were: indication of Delayed Sleep Phase Syndrome (DSPS), mid-sleep corrected for sleep debt on free days (MSFsc), sleep-onset time, and self-reported chronotype, from the Munich Chronotype Questionnaire. Generalized estimating equations analyzed the associations between LTL, sleep, and chronobiological factors, adjusted for baseline age, sex, North European ancestry, and additionally for current smoking, depression severity, obesity, and childhood trauma. Indicators of delayed circadian rhythm showed a strong and consistent effect on LTL, after adjustment for sociodemographic and health indicators. Late MSFsc (B = -49.9, p = .004), late sleep-onset time (B = -32.4, p = .001), indication of DSPS (B = -73.8, p = .036), and moderately late chronotype in adulthood (B = -71.6, p = .003) were associated with significantly shorter LTL across both waves; whereas sleep duration and insomnia symptoms were not. Extremely early chronotype showed significantly less LTL shortening than intermediate chronotype (B = 161.40, p = .037). No predictors showed accelerated LTL attrition over 6 years. Individuals with delayed circadian rhythm have significantly shorter LTL, but not faster LTL attrition rates.
Human CRY1 variants associate with attention deficit/hyperactivity disorder
Attention deficit/hyperactivity disorder (ADHD) is a common and heritable phenotype frequently accompanied by insomnia, anxiety, and depression. Here, using a reverse phenotyping approach, we report heterozygous coding variations in the core circadian clock gene cryptochrome 1 in 15 unrelated multigenerational families with combined ADHD and insomnia. The variants led to functional alterations in the circadian molecular rhythms, providing a mechanistic link to the behavioral symptoms. One variant, CRY1Δ11 c.1657+3A>C, is present in approximately 1% of Europeans, therefore standing out as a diagnostic and therapeutic marker. We showed by exome sequencing in an independent cohort of patients with combined ADHD and insomnia that 8 of 62 patients and 0 of 369 controls carried CRY1Δ11. Also, we identified a variant, CRY1Δ6 c.825+1G>A, that shows reduced affinity for BMAL1/CLOCK and causes an arrhythmic phenotype. Genotype-phenotype correlation analysis revealed that this variant segregated with ADHD and delayed sleep phase disorder (DSPD) in the affected family. Finally, we found in a phenome-wide association study involving 9438 unrelated adult Europeans that CRY1Δ11 was associated with major depressive disorder, insomnia, and anxiety. These results defined a distinctive group of circadian psychiatric phenotypes that we propose to designate as \"circiatric\" disorders.
A Cryptochrome 2 mutation yields advanced sleep phase in humans
Familial Advanced Sleep Phase (FASP) is a heritable human sleep phenotype characterized by very early sleep and wake times. We identified a missense mutation in the human Cryptochrome 2 ( CRY2 ) gene that co-segregates with FASP in one family. The mutation leads to replacement of an alanine residue at position 260 with a threonine (A260T). In mice, the CRY2 mutation causes a shortened circadian period and reduced phase-shift to early-night light pulse associated with phase-advanced behavioral rhythms in the light-dark cycle. The A260T mutation is located in the phosphate loop of the flavin adenine dinucleotide (FAD) binding domain of CRY2. The mutation alters the conformation of CRY2, increasing its accessibility and affinity for FBXL3 (an E3 ubiquitin ligase), thus promoting its degradation. These results demonstrate that CRY2 stability controlled by FBXL3 plays a key role in the regulation of human sleep wake behavior. Sleep is an essential process in animals. In humans, the disturbance of normal sleep-wake cycles through shift-work or long-term sleep disorders increases the risk of developing conditions including mental illness, cancer and metabolic syndromes. Understanding how sleep-wake behavior is controlled within cells may help researchers to develop effective therapies to reduce the ill effects of disturbed sleep-wakLouise cycles on health. To understand how our sleep-wake cycles are regulated in cells, researchers have been looking for genetic mutations that affect human sleep schedules. For example, some people have a ‘morning lark’ schedule that makes them prone to go to sleep early and rise early the next day. Others are prone to be ‘night owls’, staying up later at night and waking up later in the morning. By studying the mutations that underlie these behaviors, researchers hope to understand precisely how these genes regulate sleep schedules. Now, Hirano et al. have identified a particular mutation in a gene called Cryptochrome 2 ( CRY2 ) that causes people to have shorter sleep-wake cycles so that they wake up very early in the morning and struggle to stay awake in the evening. For the experiments, mice were genetically engineered to carry the mutant human CRY2 gene, which shortened the sleep-wake cycles of the mice and their responses to light so that they both woke up earlier and went to sleep earlier. Further experiments examined what effect the mutation has on the protein that is produced by CRY2. The mutation changes the shape of the protein, which allows an enzyme called FBXL3 to bind to the mutant protein more easily and rapidly break it down. The length of sleep cycles may be determined by how long it takes FBXL3 to break down the protein produced by CRY2 . The findings of Hirano et al. may help researchers to develop treatments for people with sleep problems.