Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
986
result(s) for
"Smart drug delivery"
Sort by:
IoT Based Smart and Portable System for Remote Patient Monitoring and Drug Delivery
by
Panda, Surya Narayan
,
Kaushal, Rajesh Kumar
,
Kumar, Naveen
in
Applications programs
,
Data communication
,
Health care
2021
In recent, there has been significant development in the healthcare technology particularly due to Internet of Things (IoT). The ubiquitous computing has brought a progressive change in the field of healthcare. In this way, the wellbeing experts are serving the society in a superior manner by utilizing such IoT based gadgets. This paper presents an IoT based model “Smart Portable Intensive Care Unit” for real-time patient monitoring with an additional feature of drug delivery from the remote location. The proposed model assisting the healthcare professionals and the relatives of the patient to monitor the physiological data of the patient from the remote location. The patient’s physiological data is transmitted to the cloud. An android based mobile application is developed to fetch the patient’s data from the cloud database in real-time. The authenticity of the user is maintained throughout the data communication process. The patient’s data is transmitted on the mobile application of the doctor both in analog and digital form. The doctor can also set the flow of drug infusion from a remote location. The proposed model can be effectively used for the patients admitted in the hospital or inside the ambulance.
Journal Article
Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms
by
Borkar, Shweta B.
,
Panda, Pritam Kumar
,
Nandanwar, Sondavid K.
in
Biocompatibility
,
Biodegradability
,
Biodegradation
2022
Presently, nanocarriers (NCs) have gained huge attention for their structural ability, good biocompatibility, and biodegradability. The development of effective NCs with stimuli-responsive properties has acquired a huge interest among scientists. When developing drug delivery NCs, the fundamental goal is to tackle the delivery-related problems associated with standard chemotherapy and to carry medicines to the intended sites of action while avoiding undesirable side effects. These nanocarriers were able of delivering drugs to tumors through regulating their pH, temperature, enzyme responsiveness. With the use of nanocarriers, chemotherapeutic drugs could be supplied to tumors more accurately that can equally encapsulate and deliver them. Material carriers for chemotherapeutic medicines are discussed in this review keeping in viewpoint of the structural properties and targeting methods that make these carriers more therapeutically effective, in addition to metabolic pathways triggered by drug-loaded NCs. Largely, the development of NCs countering to endogenous and exogenous stimuli in tumor regions and understanding of mechanisms would encourage the progress for tumor therapy and precision diagnosis in future.
Graphical Abstract
Journal Article
Polyethylene Glycol Functionalized Graphene Oxide Nanoparticles Loaded with Nigella sativa Extract: A Smart Antibacterial Therapeutic Drug Delivery System
by
AlMalki, Faizah A.
,
Noori, Farah T. M.
,
Jabir, Majid S.
in
antibacterial activity
,
Bacteria
,
Drug delivery systems
2021
Flaky graphene oxide (GO) nanoparticles (NPs) were synthesized using Hummer’s method and then capped with polyethylene glycol (PEG) by an esterification reaction, then loaded with Nigella sativa (N. sativa) seed extract. Aiming to investigate their potential use as a smart drug delivery system against Staphylococcus aureus and Escherichia coli, the spectral and structural characteristics of GO-PEG NPs were comprehensively analyzed by XRD, AFM, TEM, FTIR, and UV- Vis. XRD patterns revealed that GO-PEG had different crystalline structures and defects, as well as a higher interlayer spacing. AFM results showed GONPs with the main grain size of 24.41 nm, while GONPs–PEG revealed graphene oxide aggregation with the main grain size of 287.04 nm after loading N. sativa seed extract, which was verified by TEM examination. A strong OH bond appeared in FTIR spectra. Furthermore, UV- Vis absorbance peaks at (275, 284, 324, and 327) nm seemed to be correlated with GONPs, GO–PEG, N. sativa seed extract, and GO –PEG- N. sativa extract. The drug delivery system was observed to destroy the bacteria by permeating the bacterial nucleic acid and cytoplasmic membrane, resulting in the loss of cell wall integrity, nucleic acid damage, and increased cell-wall permeability.
Journal Article
Targeted cancer treatment using folate-conjugated sponge-like ZIF-8 nanoparticles: a review
by
Javid, Hossein
,
Hashemzadeh, Alireza
,
Mehri, Ali
in
Archives & records
,
Biochemistry
,
Biocompatibility
2024
ZIF-8 (zeolitic imidazolate framework-8) is a potential drug delivery system because of its unique properties, which include a large surface area, a large pore capacity, a large loading capacity, and outstanding stability under physiological conditions. ZIF-8 nanoparticles may be readily functionalized with targeting ligands for the identification and absorption of particular cancer cells, enhancing the efficacy of chemotherapeutic medicines and reducing adverse effects. ZIF-8 is also pH-responsive, allowing medication release in the acidic milieu of cancer cells. Because of its tunable structure, it can be easily functionalized to design cancer-specific targeted medicines. The delivery of ZIF-8 to cancer cells can be facilitated by folic acid-conjugation. Hence, it can bind to overexpressed folate receptors on the surface of cancer cells, which holds the promise of reducing unwanted deliveries. As a result of its importance in cancer treatment, the folate-conjugated ZIF-8 was the major focus of this review.
Journal Article
Poly( l ‐Histidine)‐Mediated On‐Demand Therapeutic Delivery of Roughened Ceria Nanocages for Treatment of Chemical Eye Injury
2023
Development of topical bioactive formulations capable of overcoming the low bioavailability of conventional eye drops is critically important for efficient management of ocular chemical burns. Herein, a nanomedicine strategy is presented to harness the surface roughness‐controlled ceria nanocages (SRCNs) and poly( l ‐histidine) surface coatings for triggering multiple bioactive roles of intrinsically therapeutic nanocarriers and promoting transport across corneal epithelial barriers as well as achieving on‐demand release of dual drugs [acetylcholine chloride (ACh) and SB431542] at the lesion site. Specifically, the high surface roughness helps improve cellular uptake and therapeutic activity of SRCNs while exerting a negligible impact on good ocular biocompatibility of the nanomaterials. Moreover, the high poly( l ‐histidine) coating amount can endow the SRCNs with an ≈24‐fold enhancement in corneal penetration and an effective smart release of ACh and SB431542 in response to endogenous pH changes caused by tissue injury/inflammation. In a rat model of alkali burn, topical single‐dose nanoformulation can efficaciously reduce corneal wound areas (19‐fold improvement as compared to a marketed eye drops), attenuate ≈93% abnormal blood vessels, and restore corneal transparency to almost normal at 4 days post‐administration, suggesting great promise for designing multifunctional metallic nanotherapeutics for ocular pharmacology and tissue regenerative medicine.
Journal Article
Applications of the ROS-Responsive Thioketal Linker for the Production of Smart Nanomedicines
by
Tosi, Giovanni
,
Rinaldi, Arianna
,
Duskey, Jason Thomas
in
Biocompatibility
,
Biodegradability
,
Biomedical materials
2022
Reactive oxygen species (ROS)-sensitive drug delivery systems (DDS) specifically responding to altered levels of ROS in the pathological microenvironment have emerged as an effective means to enhance the pharmaceutical efficacy of conventional nanomedicines, while simultaneously reducing side effects. In particular, the use of the biocompatible, biodegradable, and non-toxic ROS-responsive thioketal (TK) functional group in the design of smart DDS has grown exponentially in recent years. In the design of TK-based DDS, different technological uses of TK have been proposed to overcome the major limitations of conventional DDS counterparts including uncontrolled drug release and off-target effects. This review will focus on the different technological uses of TK-based biomaterials in smart nanomedicines by using it as a linker to connect a drug on the surface of nanoparticles, form prodrugs, as a core component of the DDS to directly control its structure, to control the opening of drug-releasing gates or to change the conformation of the nano-systems. A comprehensive view of the various uses of TK may allow researchers to exploit this reactive linker more consciously while designing nanomedicines to be more effective with improved disease-targeting ability, providing novel therapeutic opportunities in the treatment of many diseases.
Journal Article
Advances and Challenges in IoT-Based Smart Drug Delivery Systems: A Comprehensive Review
by
Kumar, Pramod
,
Somnache, Sandesh N.
,
Raikar, Gokuldas (Vedant) S.
in
Analysis
,
Drug delivery systems
,
Drug dosages
2023
In the current era of technology, the internet of things (IoT) plays a vital role in smart drug delivery systems. It is an emerging field that offers promising solutions for improving the efficacy, safety, and patient compliance of drug therapies. IoT-based drug delivery systems leverage advanced devices, sophisticated sensors, and smart tools to monitor and analyse the health matrices of the patient in real-time, allowing for personalised and targeted drug delivery. This technology is implemented through various types of devices, including wearable and implantable devices such as infusion pumps, smart pens, inhalers, and auto-injectors. However, the development and implementation of IoT-based drug delivery systems pose several challenges, such as ensuring data security and privacy, regulatory compliance, compatibility, and reliability. In this paper, the latest research on smart wearable devices and its analysis are addressed. It also focuses on the challenges of ensuring the safe and efficient use of this technology in healthcare applications.
Journal Article
Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness
by
Van Gheluwe, Louise
,
Munnier, Emilie
,
Chourpa, Igor
in
Active control
,
Analytical chemistry
,
Biocompatibility
2021
Progress in recent years in the field of stimuli-responsive polymers, whose properties change depending on the intensity of a signal, permitted an increase in smart drug delivery systems (SDDS). SDDS have attracted the attention of the scientific community because they can help meet two current challenges of the pharmaceutical industry: targeted drug delivery and personalized medicine. Controlled release of the active ingredient can be achieved through various stimuli, among which are temperature, pH, redox potential or even enzymes. SDDS, hitherto explored mainly in oncology, are now developed in the fields of dermatology and cosmetics. They are mostly hydrogels or nanosystems, and the most-used stimuli are pH and temperature. This review offers an overview of polymer-based SDDS developed to trigger the release of active ingredients intended to treat skin conditions or pathologies. The methods used to attest to stimuli-responsiveness in vitro, ex vivo and in vivo are discussed.
Journal Article
Recent Advances in Stimuli-Responsive Doxorubicin Delivery Systems for Liver Cancer Therapy
by
Voicu, Stefan Ioan
,
Radu, Elena Ruxandra
,
Semenescu, Augustin
in
Biodistribution
,
Cancer
,
Cancer therapies
2022
Doxorubicin (DOX) is one of the most commonly used drugs in liver cancer. Unfortunately, the traditional chemotherapy with DOX presents many limitations, such as a systematic release of DOX, affecting both tumor tissue and healthy tissue, leading to the apparition of many side effects, multidrug resistance (MDR), and poor water solubility. Furthermore, drug delivery systems’ responsiveness has been intensively studied according to the influence of different internal and external stimuli on the efficiency of therapeutic drugs. In this review, we discuss both internal stimuli-responsive drug-delivery systems, such as redox, pH and temperature variation, and external stimuli-responsive drug-delivery systems, such as the application of magnetic, photo-thermal, and electrical stimuli, for the controlled release of Doxorubicin in liver cancer therapy, along with the future perspectives of these smart delivery systems in liver cancer therapy.
Journal Article
Developments of Smart Drug-Delivery Systems Based on Magnetic Molecularly Imprinted Polymers for Targeted Cancer Therapy: A Short Review
2020
Cancer therapy is still a huge challenge, as especially chemotherapy shows several drawbacks like low specificity to tumor cells, rapid elimination of drugs, high toxicity and lack of aqueous solubility. The combination of molecular imprinting technology with magnetic nanoparticles provides a new class of smart hybrids, i.e., magnetic molecularly imprinted polymers (MMIPs) to overcome limitations in current cancer therapy. The application of these complexes is gaining more interest in therapy, due to their favorable properties, namely, the ability to be guided and to generate slight hyperthermia with an appropriate external magnetic field, alongside the high selectivity and loading capacity of imprinted polymers toward a template molecule. In cancer therapy, using the MMIPs as smart-drug-delivery robots can be a promising alternative to conventional direct administered chemotherapy, aiming to enhance drug accumulation/penetration into the tumors while fewer side effects on the other organs. Overview: In this review, we state the necessity of further studies to translate the anticancer drug-delivery systems into clinical applications with high efficiency. This work relates to the latest state of MMIPs as smart-drug-delivery systems aiming to be used in chemotherapy. The application of computational modeling toward selecting the optimum imprinting interaction partners is stated. The preparation methods employed in these works are summarized and their attainment in drug-loading capacity, release behavior and cytotoxicity toward cancer cells in the manner of in vitro and in vivo studies are stated. As an essential issue toward the development of a body-friendly system, the biocompatibility and toxicity of the developed drug-delivery systems are discussed. We conclude with the promising perspectives in this emerging field. Areas covered: Last ten years of publications (till June 2020) in magnetic molecularly imprinted polymeric nanoparticles for application as smart-drug-delivery systems in chemotherapy.
Journal Article