Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
14,336 result(s) for "Smoking model"
Sort by:
A novel technique to study the solutions of time fractional nonlinear smoking epidemic model
The primary goal of the current work is to use a novel technique known as the natural transform decomposition method to approximate an analytical solution for the fractional smoking epidemic model. In the proposed method, fractional derivatives are considered in the Caputo, Caputo–Fabrizio, and Atangana–Baleanu–Caputo senses. An epidemic model is proposed to explain the dynamics of drug use among adults. Smoking is a serious issue everywhere in the world. Notwithstanding the overwhelming evidence against smoking, it is nonetheless a harmful habit that is widespread and accepted in society. The considered nonlinear mathematical model has been successfully used to explain how smoking has changed among people and its effects on public health in a community. The two states of being endemic and disease-free, which are when the disease dies out or persists in a population, have been compared using sensitivity analysis. The proposed technique has been used to solve the model, which consists of five compartmental agents representing various smokers identified, such as potential smokers V , occasional smokers G , smokers T , temporarily quitters O , and permanently quitters W . The results of the suggested method are contrasted with those of existing numerical methods. Finally, some numerical findings that illustrate the tables and figures are shown. The outcomes show that the proposed method is efficient and effective.
The effects of a rise in cigarette price on cigarette consumption, tobacco taxation revenues, and of smoking-related deaths in 28 EU countries-- applying threshold regression modelling
Background European Union public healthcare expenditure on treating smoking and attributable diseases is estimated at over €25bn annually. The reduction of tobacco consumption has thus become one of the major social policies of the EU. This study investigates the effects of price hikes on cigarette consumption, tobacco tax revenues and smoking-caused deaths in 28 EU countries. Methods Employing panel data for the years 2005 to 2014 from Euromonitor International, the World Bank and the World Health Organization, we used income as a threshold variable and applied threshold regression modelling to estimate the elasticity of cigarette prices and to simulate the effect of price fluctuations. Results The results showed that there was an income threshold effect on cigarette prices in the 28 EU countries that had a gross national income (GNI) per capita lower than US$5418, with a maximum cigarette price elasticity of −1.227. The results of the simulated analysis showed that a rise of 10% in cigarette price would significantly reduce cigarette consumption as well the total death toll caused by smoking in all the observed countries, but would be most effective in Bulgaria and Romania, followed by Latvia and Poland. Additionally, an increase in the number of MPOWER tobacco control policies at the highest level of achievment would help reduce cigarette consumption. Conclusions It is recommended that all EU countries levy higher tobacco taxes to increase cigarette prices, and thus in effect reduce cigarette consumption. The subsequent increase in tobacco tax revenues would be instrumental in covering expenditures related to tobacco prevention and control programs.
A new fractional model for giving up smoking dynamics
The key purpose of the present work is to examine a fractional giving up smoking model pertaining to a new fractional derivative with non-singular kernel. The numerical simulations are conducted with the aid of an iterative technique. The existence of the solution is discussed by employing the fixed point postulate, and the uniqueness of the solution is also proved. The effect of various parameters is shown graphically. The numerical results for the smoking model associated with the new fractional derivative are compared with numerical results for a smoking model pertaining to the standard derivative and Caputo fractional derivative.
A Fractional Order Investigation of Smoking Model Using Caputo-Fabrizio Differential Operator
Smoking is a social trend that is prevalent around the world, particularly in places of learning and at some significant events. The World Health Organization defines smoking as the most important preventable cause of disease and the third major cause of death in humans. In order to analyze this matter, this study typically emphasizes analyzing the dynamics of the fractional order quitting smoking model via the Caputo-Fabrizio differential operator. For the numerical solution of the considered model, the Laplace transform with the Adomian decomposition method (LADM) and Homotopy perturbation method (HPM) is applied, and the comparison of both the achieved numerical solutions is presented. Moreover, numerical simulation for the suggested scheme has been presented in various fractional orders with the aid of Matlab and the numerical results are supported by illustrative graphics. The simulation reveals the aptness of the considered model.
A New Fractal-Fractional Version of Giving up Smoking Model: Application of Lagrangian Piece-Wise Interpolation along with Asymptotical Stability
In this paper, a new kind of mathematical modeling is studied by providing a five-compartmental system of differential equations with respect to new hybrid generalized fractal-fractional derivatives. For the first time, we design a model of giving up smoking to analyze its dynamical behaviors by considering two parameters of such generalized operators; i.e., fractal dimension and fractional order. We apply a special sub-category of increasing functions to investigate the existence of solutions. Uniqueness property is derived by a standard method based on the Lipschitz rule. After proving stability property, the equilibrium points are obtained and asymptotically stable solutions are studied. Finally, we illustrate all analytical results and findings via numerical algorithms and graphs obtained by Lagrangian piece-wise interpolation, and discuss all behaviors of the relevant solutions in the fractal-fractional system.
Optimal solution of the fractional-order smoking model and its public health implications
This paper proposes a nonlinear smoking model (SM) by means of a system of fractional-order differential equations. The SM is formulated in the sense of the fractional Caputo derivative. The method consists of an optimization based on a new class of basis functions, namely the generalized shifted Legendre polynomials (GSLP), to solve the fractional SM (FSM). The solution is first approximated by the GSLP with unknown coefficients and parameters in the matrix form; afterward, the operational matrices for the fractional derivatives are calculated. This means that after combining the operational matrices and the Lagrange multipliers technique, an optimization method for solving the nonlinear FSM is obtained. The convergence analysis is also proved, while several examples illustrate the applicability the proposed method.
Legendre wavelets based approach for the solution of type-2 fuzzy uncertain smoking model of fractional order
PurposeInvestigation of the smoking model is important as it has a direct effect on human health. This paper focuses on the numerical analysis of the fractional order giving up smoking model. Nonetheless, due to observational or experimental errors, or any other circumstance, it may contain some incomplete information. Fuzzy sets can be used to deal with uncertainty. Yet, there may be some inconsistency in the membership as well. As a result, the primary goal of this proposed work is to numerically solve the model in a type-2 fuzzy environment.Design/methodology/approachTriangular perfect quasi type-2 fuzzy numbers (TPQT2FNs) are used to deal with the uncertainty in the model. In this work, concepts of r2-cut at r1-plane are used to model the problem's uncertain parameter. The Legendre wavelet method (LWM) is then utilised to solve the giving up smoking model in a type-2 fuzzy environment.FindingsLWM has been effectively employed in conjunction with the r2-cut at r1-plane notion of type-2 fuzzy sets to solve the model. The LWM has the advantage of converting the non-linear fractional order model into a set of non-linear algebraic equations. LWM scheme solutions are found to be well agreed with RK4 scheme solutions. The existence and uniqueness of the model's solution have also been demonstrated.Originality/valueTo deal with the uncertainty, type-2 fuzzy numbers are used. The use of LWM in a type-2 fuzzy uncertain environment to achieve the model's required solutions is quite fascinating, and this is the key focus of this work.
Dynamic of Some Relapse in a Giving Up Smoking Model Described by Fractional Derivative
Smoking is associated with various detrimental health conditions, including cancer, heart disease, stroke, lung illnesses, diabetes, and fatal diseases. Motivated by the application of fractional calculus in epidemiological modeling and the exploration of memory and nonlocal effects, this paper introduces a mathematical model that captures the dynamics of relapse in a smoking cessation context and presents the dynamic behavior of the proposed model utilizing Caputo fractional derivatives. The model incorporates four compartments representing potential, persistent (heavy), temporally recovered, and permanently recovered smokers. The basic reproduction number R0 is computed, and the local and global dynamic behaviors of the free equilibrium smoking point (Y0) and the smoking-present equilibrium point (Y*) are analyzed. It is demonstrated that the free equilibrium smoking point (Y0) exhibits global asymptotic stability when R0≤1, while the smoking-present equilibrium point (Y*) is globally asymptotically stable when R0>1. Additionally, analytical results are validated through a numerical simulation using the predictor–corrector PECE method for fractional differential equations in Matlab software.
A stability analysis on a smoking model with stochastic perturbation
Purpose The purpose of this paper is to investigate the effects of irregular unsettling on the smoking model in form of the stochastic model as in the deterministic model these effects are neglected for simplicity. Design/methodology/approach In this research, the authors investigate a stochastic smoking system in which the contact rate is perturbed by Lévy noise to control the trend of smoking. First, present the formulation of the stochastic model and study the dynamics of the deterministic model. Then the global positive solution of the stochastic system is discussed. Further, extinction and the persistence of the proposed system are presented on the base of the reproductive number. Findings The authors discuss the dynamics of the deterministic smoking model form and further present the existence and uniqueness of non-negative global solutions for the stochastic system. Some previous study’s mentioned in the Introduction can be improved with the help of obtaining results, graphically present in this manuscript. In this regard, the authors present the sufficient conditions for the extinction of smoking for reproductive number is less than 1. Research limitations/implications In this work, the authors investigated the dynamic stochastic smoking model with non-Gaussian noise. The authors discussed the dynamics of the deterministic smoking model form and further showed for the stochastic system the existence and uniqueness of the non-negative global solution. Some previous study’s mentioned in the Introduction can be improved with the help of obtained results, clearly shown graphically in this manuscript. In this regard, the authors presented the sufficient conditions for the extinction of smoking, if <1, which can help in the control of smoking. Motivated from this research soon, the authors will extent the results to propose new mathematical models for the smoking epidemic in the form of fractional stochastic modeling. Especially, will investigate the effective strategies for control smoking throughout the world. Originality/value This study is helpful in the control of smoking throughout the world.
A Novel Technique for Solving the Nonlinear Fractional-Order Smoking Model
In the study of biological systems, nonlinear models are commonly employed, although exact solutions are often unattainable. Therefore, it is imperative to develop techniques that offer approximate solutions. This study utilizes the Elzaki residual power series method (ERPSM) to analyze the fractional nonlinear smoking model concerning the Caputo derivative. The outcomes of the proposed technique exhibit good agreement with the Laplace decomposition method, demonstrating that our technique is an excellent alternative to various series solution methods. Our approach utilizes the simple limit principle at zero, making it the easiest way to extract series solutions, while variational iteration, Adomian decomposition, and homotopy perturbation methods require integration. Moreover, our technique is also superior to the residual method by eliminating the need for derivatives, as fractional integration and differentiation are particularly challenging in fractional contexts. Significantly, our technique is simpler than other series solution techniques by not relying on Adomian’s and He’s polynomials, thereby offering a more efficient way of solving nonlinear problems.