Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
503 result(s) for "Snake Venoms - genetics"
Sort by:
Phylogenetically diverse diets favor more complex venoms in North American pitvipers
The role of natural selection in the evolution of trait complexity can be characterized by testing hypothesized links between complex forms and their functions across species. Predatory venoms are composed of multiple proteins that collectively function to incapacitate prey. Venom complexity fluctuates over evolutionary timescales, with apparent increases and decreases in complexity, and yet the causes of this variation are unclear. We tested alternative hypotheses linking venom complexity and ecological sources of selection from diet in the largest clade of front-fanged venomous snakes in North America: the rattlesnakes, copperheads, cantils, and cotton mouths. We generated independent transcriptomic and proteomic measures of venom complexity and collated several natural history studies to quantify dietary variation. We then constructed genome-scale phylogenies for these snakes for comparative analyses. Strikingly, prey phylogenetic diversity was more strongly correlated to venom complexity than was overall prey species diversity, specifically implicating prey species’ divergence, rather than the number of lineages alone, in the evolution of complexity. Prey phylogenetic diversity further predicted transcriptomic complexity of three of the four largest gene families in viper venom, showing that complexity evolution is a concerted response among many independent gene families. We suggest that the phylogenetic diversity of prey measures functionally relevant divergence in the targets of venom, a claim supported by sequence diversity in the coagulation cascade targets of venom. Our results support the general concept that the diversity of species in an ecological community is more important than their overall number in determining evolutionary patterns in predator trait complexity.
Snakes on a plain: biotic and abiotic factors determine venom compositional variation in a wide-ranging generalist rattlesnake
Background Snake venoms are trophic adaptations that represent an ideal model to examine the evolutionary factors that shape polymorphic traits under strong natural selection. Venom compositional variation is substantial within and among venomous snake species. However, the forces shaping this phenotypic complexity, as well as the potential integrated roles of biotic and abiotic factors, have received little attention. Here, we investigate geographic variation in venom composition in a wide-ranging rattlesnake ( Crotalus viridis viridis ) and contextualize this variation by investigating dietary, phylogenetic, and environmental variables that covary with venom. Results Using shotgun proteomics, venom biochemical profiling, and lethality assays, we identify 2 distinct divergent phenotypes that characterize major axes of venom variation in this species: a myotoxin-rich phenotype and a snake venom metalloprotease (SVMP)-rich phenotype. We find that dietary availability and temperature-related abiotic factors are correlated with geographic trends in venom composition. Conclusions Our findings highlight the potential for snake venoms to vary extensively within species, for this variation to be driven by biotic and abiotic factors, and for the importance of integrating biotic and abiotic variation for understanding complex trait evolution. Links between venom variation and variation in biotic and abiotic factors indicate that venom variation likely results from substantial geographic variation in selection regimes that determine the efficacy of venom phenotypes across populations and snake species. Our results highlight the cascading influence of abiotic factors on biotic factors that ultimately shape venom phenotype, providing evidence for a central role of local selection as a key driver of venom variation.
Cysteine-Rich Secretory Proteins (CRISPs) from Venomous Snakes: An Overview of the Functional Diversity in a Large and Underappreciated Superfamily
The CAP protein superfamily (Cysteine-rich secretory proteins (CRISPs), Antigen 5 (Ag5), and Pathogenesis-related 1 (PR-1) proteins) is widely distributed, but for toxinologists, snake venom CRISPs are the most familiar members. Although CRISPs are found in the majority of venoms, very few of these proteins have been functionally characterized, but those that have been exhibit diverse activities. Snake venom CRISPs (svCRISPs) inhibit ion channels and the growth of new blood vessels (angiogenesis). They also increase vascular permeability and promote inflammatory responses (leukocyte and neutrophil infiltration). Interestingly, CRISPs in lamprey buccal gland secretions also manifest some of these activities, suggesting an evolutionarily conserved function. As we strive to better understand the functions that CRISPs serve in venoms, it is worth considering the broad range of CRISP physiological activities throughout the animal kingdom. In this review, we summarize those activities, known crystal structures and sequence alignments, and we discuss predicted functional sites. CRISPs may not be lethal or major components of venoms, but given their almost ubiquitous occurrence in venoms and the accelerated evolution of svCRISP genes, these venom proteins are likely to have functions worth investigating.
Adaptive evolution of distinct prey-specific toxin genes in rear-fanged snake venom
Venom proteins evolve rapidly, and as a trophic adaptation are excellent models for predator–prey evolutionary studies. The key to a deeper understanding of venom evolution is an integrated approach, combining prey assays with analysis of venom gene expression and venom phenotype. Here, we use such an approach to study venom evolution in the Amazon puffing snake, Spilotes sulphureus , a generalist feeder. We identify two novel three-finger toxins: sulditoxin and sulmotoxin 1. These new toxins are not only two of the most abundant venom proteins, but are also functionally intriguing, displaying distinct prey-specific toxicities. Sulditoxin is highly toxic towards lizard prey, but is non-toxic towards mammalian prey, even at greater than 22-fold higher dosage. By contrast, sulmotoxin 1 exhibits the reverse trend. Furthermore, evolutionary analysis and structural modelling show highest sequence variability in the central loop of these proteins, probably driving taxon-specific toxicity. This is, to our knowledge, the first case in which a bimodal and contrasting pattern of toxicity has been shown for proteins in the venom of a single snake in relation to diet. Our study is an example of how toxin gene neofunctionalization can result in a venom system dominated by one protein superfamily and still exhibit flexibility in prey capture efficacy.
Tracking the recruitment and evolution of snake toxins using the evolutionary context provided by the Bothrops jararaca genome
Venom is a key adaptive innovation in snakes, and how nonvenom genes were co-opted to become part of the toxin arsenal is a significant evolutionary question. While this process has been investigated through the phylogenetic reconstruction of toxin sequences, evidence provided by the genomic context of toxin genes remains less explored. To investigate the process of toxin recruitment, we sequenced the genome of Bothrops jararaca, a clinically relevant pitviper. In addition to producing a road map with canonical structures of genes encoding 12 toxin families, we inferred most of the ancestral genes for their loci. We found evidence that 1) snake venom metalloproteinases (SVMPs) and phospholipases A₂ (PLA2) have expanded in genomic proximity to their nonvenomous ancestors; 2) serine proteinases arose by co-opting a local gene that also gave rise to lizard gilatoxins and then expanded; 3) the bradykinin-potentiating peptides originated from a C-type natriuretic peptide gene backbone; and 4) VEGF-F was co-opted from a PGF-like gene and not from VEGF-A. We evaluated two scenarios for the original recruitment of nontoxin genes for snake venom: 1) in locus ancestral gene duplication and 2) in locus ancestral gene direct co-option. The first explains the origins of two important toxins (SVMP and PLA2), while the second explains the emergence of a greater number of venom components. Overall, our results support the idea of a locally assembled venom arsenal in which the most clinically relevant toxin families expanded through posterior gene duplications, regardless of whether they originated by duplication or gene co-option.
Many Options, Few Solutions: Over 60 My Snakes Converged on a Few Optimal Venom Formulations
Gene expression changes contribute to complex trait variations in both individuals and populations. However, the evolution of gene expression underlying complex traits over macroevolutionary timescales remains poorly understood. Snake venoms are proteinaceous cocktails where the expression of each toxin can be quantified and mapped to a distinct genomic locus and traced for millions of years. Using a phylogenetic generalized linear mixed model, we analyzed expression data of toxin genes from 52 snake species spanning the 3 venomous snake families and estimated phylogenetic covariance, which acts as a measure of evolutionary constraint. We find that evolution of toxin combinations is not constrained. However, although all combinations are in principle possible, the actual dimensionality of phylomorphic space is low, with envenomation strategies focused around only four major toxin families: metalloproteases, three-finger toxins, serine proteases, and phospholipases A2. Although most extant snakes prioritize either a single or a combination of major toxin families, they are repeatedly recruited and lost. We find that over macroevolutionary timescales, the venom phenotypes were not shaped by phylogenetic constraints, which include important microevolutionary constraints such as epistasis and pleiotropy, but more likely by ecological filtering that permits a small number of optimal solutions. As a result, phenotypic optima were repeatedly attained by distantly related species. These results indicate that venoms evolve by selection on biochemistry of prey envenomation, which permit diversity through parallelism, and impose strong limits, since only a few of the theoretically possible strategies seem to work well and are observed in extant snakes.
Dynamic genetic differentiation drives the widespread structural and functional convergent evolution of snake venom proteinaceous toxins
Background The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. Results Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus , Heterodon nasicus , Rhabdophis subminiatus ; Homalopsidae – Homalopsis buccata ; Lamprophiidae - Malpolon monspessulanus , Psammophis schokari , Psammophis subtaeniatus , Rhamphiophis oxyrhynchus ; and Viperidae – Bitis atropos , Pseudocerastes urarachnoides , Tropidolaeumus subannulatus , Vipera transcaucasiana . These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. Conclusions We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator–prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline.
Snake Venomics: Fundamentals, Recent Updates, and a Look to the Next Decade
Venomic research, powered by techniques adapted from proteomics, transcriptomics, and genomics, seeks to unravel the diversity and complexity of venom through which knowledge can be applied in the treatment of envenoming, biodiscovery, and conservation. Snake venom proteomics is most extensively studied, but the methods varied widely, creating a massive amount of information which complicates data comparison and interpretation. Advancement in mass spectrometry technology, accompanied by growing databases and sophisticated bioinformatic tools, has overcome earlier limitations of protein identification. The progress, however, remains challenged by limited accessibility to samples, non-standardized quantitative methods, and biased interpretation of -omic data. Next-generation sequencing (NGS) technologies enable high-throughput venom-gland transcriptomics and genomics, complementing venom proteomics by providing deeper insights into the structural diversity, differential expression, regulation and functional interaction of the toxin genes. Venomic tissue sampling is, however, difficult due to strict regulations on wildlife use and transfer of biological materials in some countries. Limited resources for techniques and funding are among other pertinent issues that impede the progress of venomics, particularly in less developed regions and for neglected species. Genuine collaboration between international researchers, due recognition of regional experts by global organizations (e.g., WHO), and improved distribution of research support, should be embraced.
Replacement and Parallel Simplification of Nonhomologous Proteinases Maintain Venom Phenotypes in Rear-Fanged Snakes
Novel phenotypes are commonly associated with gene duplications and neofunctionalization, less documented are the cases of phenotypic maintenance through the recruitment of novel genes. Proteolysis is the primary toxic character of many snake venoms, and ADAM metalloproteinases, named snake venom metalloproteinases (SVMPs), are largely recognized as the major effectors of this phenotype. However, by investigating original transcriptomes from 58 species of advanced snakes (Caenophidia) across their phylogeny, we discovered that a different enzyme, matrix metalloproteinase (MMP), is actually the dominant venom component in three tribes (Tachymenini, Xenodontini, and Conophiini) of rear-fanged snakes (Dipsadidae). Proteomic and functional analyses of these venoms further indicate that MMPs are likely playing an “SVMP-like” function in the proteolytic phenotype. A detailed look into the venom-specific sequences revealed a new highly expressed MMP subtype, named snake venom MMP (svMMP), which originated independently on at least three occasions from an endogenous MMP-9. We further show that by losing ancillary noncatalytic domains present in its ancestors, svMMPs followed an evolutionary path toward a simplified structure during their expansion in the genomes, thus paralleling what has been proposed for the evolution of their Viperidae counterparts, the SVMPs. Moreover, we inferred an inverse relationship between the expression of svMMPs and SVMPs along the evolutionary history of Xenodontinae, pointing out that one type of enzyme may be substituting for the other, whereas the general (metallo)proteolytic phenotype is maintained. These results provide rare evidence on how relevant phenotypic traits can be optimized via natural selection on nonhomologous genes, yielding alternate biochemical components.
The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus)
Background Snake venoms have significant impacts on human populations through the morbidity and mortality associated with snakebites and as sources of drugs, drug leads, and physiological research tools. Genes expressed by venom-gland tissue, including those encoding toxic proteins, have therefore been sequenced but only with relatively sparse coverage resulting from the low-throughput sequencing approaches available. High-throughput approaches based on 454 pyrosequencing have recently been applied to the study of snake venoms to give the most complete characterizations to date of the genes expressed in active venom glands, but such approaches are costly and still provide a far-from-complete characterization of the genes expressed during venom production. Results We describe the de novo assembly and analysis of the venom-gland transcriptome of an eastern diamondback rattlesnake ( Crotalus adamanteus ) based on 95,643,958 pairs of quality-filtered, 100-base-pair Illumina reads. We identified 123 unique, full-length toxin-coding sequences, which cluster into 78 groups with less than 1% nucleotide divergence, and 2,879 unique, full-length nontoxin coding sequences. The toxin sequences accounted for 35.4% of the total reads, and the nontoxin sequences for an additional 27.5%. The most highly expressed toxin was a small myotoxin related to crotamine, which accounted for 5.9% of the total reads. Snake-venom metalloproteinases accounted for the highest percentage of reads mapping to a toxin class (24.4%), followed by C-type lectins (22.2%) and serine proteinases (20.0%). The most diverse toxin classes were the C-type lectins (21 clusters), the snake-venom metalloproteinases (16 clusters), and the serine proteinases (14 clusters). The high-abundance nontoxin transcripts were predominantly those involved in protein folding and translation, consistent with the protein-secretory function of the tissue. Conclusions We have provided the most complete characterization of the genes expressed in an active snake venom gland to date, producing insights into snakebite pathology and guidance for snakebite treatment for the largest rattlesnake species and arguably the most dangerous snake native to the United States of America, C. adamanteus . We have more than doubled the number of sequenced toxins for this species and created extensive genomic resources for snakes based entirely on de novo assembly of Illumina sequence data.