Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
3,342
result(s) for
"Softwoods"
Sort by:
Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis
2012
Afforestation has been proposed as an effective method of carbon (C) sequestration; however, the magnitude and direction of soil carbon accumulation following afforestation and its regulation by soil nitrogen (N) dynamics are still not well understood.
We synthesized the results from 292 sites and carried out a meta-analysis to evaluate the dynamics of soil C and N stocks following afforestation.
Changes in soil C and N stocks were significantly correlated and had a similar temporal pattern. Significant C and N stock increases were found 30 and 50 yr after afforestation, respectively. Before these time points, C and N stocks were either depleted or unchanged. Carbon stock increased following afforestation on cropland and pasture, and in tropical, subtropical and boreal zones. The soil N stock increased in the subtropical zone. The soil C stock increased after afforestation with hardwoods such as Eucalyptus, but did not change after afforestation with softwoods such as pine. Soil N stocks increased and decreased, respectively, after afforestation with hardwoods (excluding Eucalyptus) and pine.
These results indicate that soil C and N stocks both increase with time after afforestation, and that C sequestration through afforestation depends on prior land use, climate and the tree species planted.
Journal Article
Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility
2016
Background Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the explosive decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. Results The effect of the explosive decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the-typically very recalcitrant-softwood biomass. Conclusions This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the enhancing effect of the explosion is thoroughly exploited, even very recalcitrant biomass like softwood can be made enzymatically digestible.
Journal Article
CNFs from softwood pulp fibers containing hemicellulose and lignin
2022
The energy demand to produce cellulose nanofibrils, CNFs, is high and additionally the cost of the starting material, the pulp, is substantial as high purity cellulose dissolving pulp is generally used. Pulps aimed for board and paper are produced at higher yield as they contain hemicelluloses and, in the case of unbleached pulp, lignin, and would be a more economical starting material for CNFs. It is of interest to understand how the presence of hemicellulose and lignin affects the fibrillation process and CNF properties. Kraft cooks of softwood were performed as well as kraft cooks with addition of polysulfide to increase the hemicellulose content. Part of the pulps were bleached to remove residual lignin, thus making it possible to compare pulps with and without lignin. Higher amount of hemicellulose had an obstructive effect on the enzymatic pre-treatment whereas lignin had no adverse effect on enzyme accessibility. Increased amount of charged groups improved the accessibility for enzymes. Both hemicellulose and lignin were carboxymethylated when pre-treatment by carboxymethylation was employed. However, carboxymethylation partly dissolved hemicelluloses. The tensile strength of CNF films was independent of the chemical composition of the pulp and the pre-treatment strategy. However, since the enzymatic pre-treatment decreased the cellulose DP more, CNF films from enzymatically pre-treated pulps had generally lower tensile strength.
Journal Article
Discrimination between softwood and hardwood based on hemicellulose content obtained with portable nuclear magnetic resonance
by
Longo, Sveva
,
Frasca, Francesca
,
Siani, Anna Maria
in
Ambient temperature
,
Bioorganic Chemistry
,
cell walls
2022
Wood is a hygroscopic material that can reach an equilibrium moisture content when ambient temperature and relative humidity are constant. Moisture affects all properties of wood, as well as its preservative treatment. The hygroscopic behavior of wood can be attributed to the hydroxyl groups of its constituents. Since hemicellulose shows the greatest water affinity, it can be considered the main responsible for the ingress of water into the wood mass. Below the fiber saturation point, wood moisture is only stored in the cell walls. Proton Nuclear Magnetic Resonance (NMR) is a relative method used for the evaluation of moisture content distribution in wood and NMR relaxation is an excellent tool to study the hygroscopic behavior of different woods below the fiber saturation point. This work aimed to test the hypothesis of discriminating among softwoods and hardwoods of different botanical species and identifying further sub-clusters of woods based on the NMR proton spin–spin (
T
2
) and spin–lattice (
T
1
) relaxation times of their cell wall water in the hygroscopic moisture range. Importantly, the study was performed using a portable low-cost NMR instrument with which it is possible to investigate wood samples of any size. The main result of this study was that at RH = 94% the relaxation time
T
2,2
, associated with the cell wall bound water, can be used as a marker to discriminate among softwoods and hardwoods.
Graphical abstract
Journal Article
Carbohydrate-aromatic interface and molecular architecture of lignocellulose
2022
Plant cell walls constitute the majority of lignocellulosic biomass and serve as a renewable resource of biomaterials and biofuel. Extensive interactions between polysaccharides and the aromatic polymer lignin make lignocellulose recalcitrant to enzymatic hydrolysis, but this polymer network remains poorly understood. Here we interrogate the nanoscale assembly of lignocellulosic components in plant stems using solid-state nuclear magnetic resonance and dynamic nuclear polarization approaches. We show that the extent of glycan-aromatic association increases sequentially across grasses, hardwoods, and softwoods. Lignin principally packs with the xylan in a non-flat conformation via non-covalent interactions and partially binds the junction of flat-ribbon xylan and cellulose surface as a secondary site. All molecules are homogeneously mixed in softwoods; this unique feature enables water retention even around the hydrophobic aromatics. These findings unveil the principles of polymer interactions underlying the heterogeneous architecture of lignocellulose, which may guide the rational design of more digestible plants and more efficient biomass-conversion pathways.
The plant biomass is a composite formed by a variety of polysaccharides and an aromatic polymer named lignin. Here, the authors use solid-state NMR spectroscopy to unveil the carbohydrate-aromatic interface that leads to the variable architecture of lignocellulose biomaterials.
Journal Article
Alien plant invasions in European woodlands
by
Biurrun, Idoia
,
Škvorc, Željko
,
Pergl, Jan
in
Archives & records
,
Biodiversity
,
Biodiversity and Ecology
2017
Aim: Woodlands make up a third of European territory and carry out important ecosystem functions, yet a comprehensive overview of their invasion by alien plants has never been undertaken across this continent. Location: Europe. Methods: We extracted data from 251,740 vegetation plots stored in the recently compiled European Vegetation Archive. After filtering (resulting in 83,396 plots; 39 regions; 1970-2015 time period), we analysed the species pool and frequency of alien vascular plants with respect to geographic origin and life-forms, and the levels of invasion across the European Nature Information System (EUNIS) woodland habitats. Results: We found a total of 386 alien plant species (comprising 7% of all recorded vascular plants). Aliens originating from outside of and from within Europe were almost equally represented in the species pool (192 vs. 181 species) but relative frequency was skewed towards the former group (77% vs. 22%) due, to some extent, to the frequent occurrence of impatiens parviflora (21% frequency among alien plants). Phanerophytes were the most species-rich life-form (148 species) and had the highest representation in terms of relative frequency (39%) among aliens in the dataset Apart from Europe (181 species), North America was the most important source of alien plants (109 species). At the local scale, temperate and boreal softwood riparian woodland (5%) and mire and mountain coniferous woodland (<1%) had the highest and lowest mean relative alien species richness (percentage of alien species per plot), respectively. Main conclusions: Our results indicate that European woodlands are prone to alien plant invasions especially when exposed to disturbance, fragmentation, alien propagule pressure and high soil nutrient levels. Given the persistence of these factors in the landscape, competitive alien plant species with a broad niche, including alien trees and shrubs, are likely to persist and spread further into European woodlands.
Journal Article
Molecular architecture of softwood revealed by solid-state NMR
2019
Economically important softwood from conifers is mainly composed of the polysaccharides cellulose, galactoglucomannan and xylan, and the phenolic polymer, lignin. The interactions between these polymers lead to wood mechanical strength and must be overcome in biorefining. Here, we use
13
C multidimensional solid-state NMR to analyse the polymer interactions in never-dried cell walls of the softwood, spruce. In contrast to some earlier softwood cell wall models, most of the xylan binds to cellulose in the two-fold screw conformation. Moreover, galactoglucomannan alters its conformation by intimately binding to the surface of cellulose microfibrils in a semi-crystalline fashion. Some galactoglucomannan and xylan bind to the same cellulose microfibrils, and lignin is associated with both of these cellulose-bound polysaccharides. We propose a model of softwood molecular architecture which explains the origin of the different cellulose environments observed in the NMR experiments. Our model will assist strategies for improving wood usage in a sustainable bioeconomy.
Understanding the interactions between the constituents of the cell walls in wood is important for understanding the mechanical properties. Here, the authors report on a solid-state NMR study of never-dried softwood, noticing differences to previous reports and develop a model of softwood architecture.
Journal Article
The underappreciated role of rodent generalists in fungal spore dispersal networks
2020
Animals are often the primary dispersers of seeds and fungal spores. Specialist species that consume fruits or fungal fruiting bodies (sporocarps) as their main food source are thought to play a more important role in dispersal networks compared to generalist species. However, dispersal networks are often based on occurrence data, overlooking the influence of animal abundance and dispersal effectiveness on network interactions. Using rodent-mycorrhizal fungi networks, we determined how diet specialization and abundance influence the role of rodent species in dispersing fungal spores in temperate forests of northern New Hampshire, USA. We tracked the interactions of five rodent species and 34 fungal taxa over a 3-yr period across hardwood, mixed, and softwood forest stands. We accounted for fluctuations in rodent abundance and differences in the number of spores dispersed in rodent scat. Myodes gapperi, a fungal specialist, dispersed a more diverse spore community than rodent generalists and was consistently the most important disperser in forest types with high fungal availability. Nevertheless, during years when generalist species such as Tamias striatus and Peromyscus maniculatus reached high abundance, their relative importance (species strength) in networks approached or even surpassed that of M. gapperi, particularly in forest types where M. gapperi was less common and fungal availability was low. Increased numbers of generalists enhanced network interaction diversity and the number of fungal taxa dispersed, the timing of which was coincident with seedling establishment following masting, a stage when inoculation by mycorrhizal fungi is critical for growth and survival. Our findings suggest that although specialists play key roles in dispersing mycorrhizal fungal spores, generalists play a heretofore underappreciated role.
Journal Article
Sustainable production of dopamine hydrochloride from softwood lignin
2023
Dopamine is not only a widely used commodity pharmaceutical for treating neurological diseases but also a highly attractive base for advanced carbon materials. Lignin, the waste from the lignocellulosic biomass industry, is the richest source of renewable aromatics on earth. Efficient production of dopamine direct from lignin is a highly desirable target but extremely challenging. Here, we report an innovative strategy for the sustainable production of dopamine hydrochloride from softwood lignin with a mass yield of 6.4 wt.%. Significantly, the solid dopamine hydrochloride is obtained by a simple filtration process in purity of 98.0%, which avoids the tedious separation and purification steps. The approach begins with the acid-catalyzed depolymerization, followed by deprotection, hydrogen-borrowing amination, and hydrolysis of methoxy group, transforming lignin into dopamine hydrochloride. The technical economic analysis predicts that this process is an economically competitive production process. This study fulfills the unexplored potential of dopamine hydrochloride synthesis from lignin.
Efficient production of dopamine direct from lignin is a highly desirable target but extremely challenging. Here, we report an innovative strategy for the sustainable production of dopamine hydrochloride from softwood lignin with a mass yield of 6.4 wt.%.
Journal Article
On the organization of hemicelluloses in the wood cell wall
2022
The structural arrangement of the polymers in the cell wall of wood has still not been fully established. This relates specifically to the role of the two hemicelluloses, glucomannan and xylan, in the secondary cell wall. In softwoods there is a good consensus with regard to the glucomannan as associated with the cellulose microfibrils while the role of the xylan has been more questioned. Recent NMR-studies have now strongly indicated a close association of xylan also to the cellulose microfibrils in softwoods. In order to assess these findings, studies utilizing complementary techniques are here re-examined in order to scrutinize these results. By analyzing results from polymer orientation (polarized FTIR), molecular blending (dynamic mechanical analysis), polymer interaction (dynamic FTIR) and moisture induced swelling (synchrotron X-ray) a close association of xylan to cellulose is here fully supported. Thus, the overall results from all multiple techniques strongly advocate an association of both glucomannan and xylan to the cellulose microfibrils and aggregates while the lignin is considered as encompassing the remaining space between the undulating cellulose/hemicellulose aggregate structures and acting as an independent polymer entity.
Graphical abstract
Journal Article