Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
200
result(s) for
"Sogatella furcifera"
Sort by:
Population dynamics of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae) in Central Vietnam and its effects on their spring migration to China
2017
Rice planthopper (RPH) populations of Nilaparvata lugens and Sogatella furcifera periodically have erupted across Asia. Predicting RPH population dynamics and identifying their source areas are crucial for the management of these migratory pests in China, but the origins of the migrants to temperate and subtropical regions in China remains unclear. In particular, their early migration to China in March and April have not yet been explored due to a lack of research data available from potential source areas, Central Vietnam and Laos. In this study, we examined the population dynamics and migratory paths of N. lugens and S. furcifera in Vietnam and South China in 2012 and 2013. Trajectory modeling showed that in March and April in 2012 and 2013, RPH emigrated from source areas in Central Vietnam where rice was maturing to the Red River Delta and South China. Early migrants originated from Southern Central Vietnam (14–16°N), but later most were from Northern Central Vietnam (16–19°N). Analysis of meteorological and light-trap data from Hepu in April (1977–2013) using generalized linear models showed that immigration increased with precipitation in Southern Central Vietnam in January, but declined with precipitation in Northern Central Vietnam in January. These results determined that the RPH originate from overwintering areas in Central Vietnam, but not from southernmost areas of Vietnam. Winter precipitation, rather than temperature was the most important factor determining the number of RPH migrants. Based on their similar population dynamics and low population densities in Central Vietnam, we further speculated that RPH migrate to track ephemeral food resources whilst simultaneously avoiding predators. Migrations do not seem to be initiated by interspecific competition, overcrowding or host deterioration. Nevertheless, S. furcifera establishes populations earlier than N. lugens South China, perhaps to compensate for interspecific competition. We provide new information that could assist with forecasting outbreaks and implementing control measures against these migratory pests.
Journal Article
Expression Differences of Resistance-Related Genes Induced by Cycloxaprid Using qRT-PCR in the Female Adult of Sogatella furcifera (Hemiptera: Delphacidae)
2017
As a newer cis-nitromethylene neonicotinoid pesticide at present, cycloxaprid has good industrialization prospects, including the management of imidacloprid-resistant populations, because this chemical have an excellent efficiency against rice planthoppers. Sogatella furcifera (Horváth) is the most economically important pest of rice worldwide and has developed resistance to many insecticides. This study focused on the expression change of these resistance genes, induced by cycloxaprid, involved in metabolic detoxification and receptor protein. Twenty-two differentially expressed genes (DEGs) that may be related with the insecticide resistance were found in the transcriptome of S. furcifera, including 2 cytochrome P450 genes, 2 glutathione S-transferase (GST) genes, 1 acid phosphatase (ACP) gene, 12 decarboxylase genes, 2 glycolipid genes, 1 cadherin gene, and 2 glycosyltransferase genes, which were up- or downregulated in response to an exposure of cycloxaprid. Furthermore, two P450 genes (CYP4 and CYP6 family, respectively), two decarboxylase genes, and one glycosyltransferase gene were validated by qRT-PCR. Expression differences of these genes verified successfully by qRT-PCR in response to different concentrations and times treated with cycloxaprid could explain the insecticide resistance mechanism under cycloxaprid stress in S. furcifera.
Journal Article
Identification and Characterization of Three Novel Solemo-like Viruses in the White-Backed Planthopper, Sogatella furcifera
2024
Agricultural insects play a crucial role in transmitting plant viruses and host a considerable number of insect-specific viruses (ISVs). Among these insects, the white-backed planthoppers (WBPH; Sogatella furcifera, Hemiptera: Delphacidae) are noteworthy rice pests and are responsible for disseminating the southern rice black-streaked dwarf virus (SRBSDV), a significant rice virus. In this study, we analyzed WBPH transcriptome data from public sources and identified three novel viruses. These newly discovered viruses belong to the plant-associated viral family Solemoviridae and were tentatively named Sogatella furcifera solemo-like virus 1-3 (SFSolV1-3). Among them, SFSolV1 exhibited a prevalent existence in different laboratory populations, and its complete genome sequence was obtained using rapid amplification of cDNA ends (RACE) approaches. To investigate the antiviral RNA interference (RNAi) response in WBPH, we conducted an analysis of virus-derived small interfering RNAs (vsiRNAs). The vsiRNAs of SFSolV1 and -2 exhibited typical patterns associated with the host’s siRNA-mediated antiviral immunity, with a preference for 21- and 22-nt vsiRNAs derived equally from both the sense and antisense genomic strands. Furthermore, we examined SFSolV1 infection and distribution in WBPH, revealing a significantly higher viral load of SFSolV1 in nymphs’ hemolymph compared to other tissues. Additionally, in adult insects, SFSolV1 exhibited higher abundance in male adults than in female adults.
Journal Article
Changes in Transcriptome and Gene Expression in Sogatella furcifera (Hemiptera: Delphacidae) in Response to Cycloxaprid
2021
The white-backed planthopper, Sogatella furcifera (Horváth), causes substantial damage to crops by direct feeding or virus transmission, especially southern rice black-streaked dwarf virus, which poses a serious threat to rice production. Cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, has high efficacy against rice planthoppers, including imidacloprid-resistant populations. However, information about the influence of cycloxaprid on S. furcifera (Hemiptera: Delphacidae) at the molecular level is limited. Here, by de novo transcriptome sequencing and assembly, we constructed two transcriptomes of S. furcifera and profiled the changes in gene expression in response to cycloxaprid at the transcription level. We identified 157,906,456 nucleotides and 131,601 unigenes using the Illumina technology from cycloxaprid-treated and untreated S. furcifera. In total, 38,534 unigenes matched known proteins in at least one database, accounting for 29.28% of the total unigenes. The number of coding DNA sequences was 28,546 and that of amino acid sequences in the coding region was 22,299. In total, 15,868 simple sequence repeats (SSRs) were identified. The trinucleotide repeats accounted for 45.1% (7,157) of the total SSRs and (AAG/CTT)n were the most frequent motif. There were 359 differentially expressed genes that might have been induced by cycloxaprid. There were 131 upregulated and 228 downregulated genes. Twenty-two unigenes might be involved in resistance against cycloxaprid, such as cytochrome P450, glutathione S-transferase (GST), acid phosphatase (ACP), and cadherin. Our study provides vital information on cycloxaprid-induced resistance mechanisms, which will be useful to analyze the molecular mechanisms of cycloxaprid resistance and may lead to the development of novel strategies to manage S. furcifera.
Journal Article
Genetic Analysis and Gene Mapping of Whitebacked Planthopper Resistance Genes from Rice Varieties
2023
ABSTRACT The whitebacked planthopper (WBPH), also named Sogatella furcifera (Horváth), has become a significant threat to rice production. Identification of WBPH-resistant germplasm and genes can promote the development of resistance varieties and effectively limit pest damage. In this study, fourteen varieties of rice were surveyed for insect resistance by assessing growth rates via seedbox screening, feeding activity via measurements of honeydew excretion, and insect development by counting the number of hatched nymphs. Two resistance varieties N22 and OB677 were crossed with susceptible line 9311 to develop mapping populations, which were applied to map the resistance genes/QTLs. In the results, rice variety PTB33 showed high resistance to both brown planthopper (BPH) and WBPH, varieties N22, RBPH327, and OB677 showed moderate resistance to WBPH. Host choice test and seedling survival rates further verified the WBPH resistance of PTB33, N22, and OB677. By using two F2 mapping populations, two WBPH resistance genes were detected in N22 and OB677. Wbph1 was mapped on chromosome 2 of N22 in a region that harbored the markers RM13650 and RM13478. Its largest logarithm of the odds (LOD) score was 3.94, which explained a 16.6% of the phenotypic variation. Wbph9 was mapped on chromosome 3 of OB677, where it was flanked by markers RM3513 and RM3525. It had a LOD score of 3.4, explaining a 17.2% of the phenotypic variation. Four varieties PTB33, N22, RBPH327, and OB677 showed resistance to WBPH, of which OB677 was a novel resistance germplasm; and a novel resistance gene Wbph9 was mapped on chromosome 3. In conclusion, four WBPH resistance varieties were detected and one novel resistance gene was mapped.
Journal Article
Quantitative trait loci identification, fine mapping and gene expression profiling for ovicidal response to whitebacked planthopper (Sogatella furcifera Horvath) in rice (Oryza sativa L.)
2014
Background
The whitebacked planthopper (WBPH),
Sogatella furcifera
Horváth, is a serious rice pest in Asia. Ovicidal resistance is a natural rice defense mechanism against WBPH and is characterized by the formation of watery lesions (WLs) and increased egg mortality (EM) at the WBPH oviposition sites.
Results
This study aimed to understand the genetic and molecular basis of rice ovicidal resistance to WBPH by combining genetic and genomic analyses. First, the ovicidal trait in doubled haploid rice lines derived from a WBPH-resistant cultivar (CJ06) and a WBPH-susceptible cultivar (TN1) were phenotyped based on the necrotic symptoms of the leaf sheaths and EM. Using a constructed molecular linkage map, 19 quantitative trait loci (QTLs) associated with WLs and EM were identified on eight chromosomes. Of them,
qWL6
was determined to be a major QTL for WL. Based on chromosome segment substitution lines and a residual heterozygous population, a high-resolution linkage analysis further defined the
qWL6
locus to a 122-kb region on chromosome 6, which was annotated to encode 20 candidate genes. We then conducted an Affymetrix microarray analysis to determine the transcript abundance in the CJ06 and TN1 plants. Upon WBPH infestation, 432 genes in CJ06 and 257 genes in TN1 were significantly up-regulated, while 802 genes in CJ06 and 398 genes in TN1 were significantly down-regulated. This suggests that remarkable global changes in gene expression contribute to the ovicidal resistance of rice. Notably, four genes in the 122-kb region of the
qWL6
locus were differentially regulated between CJ06 and TN1 in response to the WBPH infestation, suggesting they may be candidate resistance genes.
Conclusions
The information obtained from the fine mapping of
qWL6
and the microarray analyses will facilitate the isolation of this important resistance gene and its use in breeding WBPH-resistant rice.
Journal Article
Source Areas for the Early Immigration of Sogatella furcifera (Homoptera: Delphacidae) at Xiushan in the Middle Reach of Yangtze River of China
2015
The spatiotemporal distribution of source areas for the early immigration of the whitebacked planthopper, Sogatella furcifera (Horvth), at Xiushan in the middle reach of Yangtze River of China, was analyzed with HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and Arc-GIS 10.0. The analysis was based on light trap data collected during April–July in 2000–2012. The synoptic meteorology backgrounds during the immigration periods were analyzed by GrADS (Grid Analysis and Display System). The light trap catches of S. furcifera varied monthly and annually. S. furcifera started immigration in Xiushan in early April to early May, whereas the main immigration period was in July. The distribution of the source areas varied monthly, and the core was moved from the south to the north gradually. The main source areas of S. furcifera in May were in southwestern Guangxi and northern Vietnam. The source areas of S. furcifera in June were located in southwestern Guangxi and western Hunan. Additionally, some of the pests were from southeastern Yunnan. The source areas in July were in northwestern Guangxi, southwestern Guizhou, eastern Yunnan, and the transitional parts of Guangxi, Guizhou, and Yunnan. The sum frequencies of southwest and south winds on the 850 hPa isobaric surface of Xiushan of May-July in heavy occurrence years were more than the light occurrence years. The key meteorological factors were suggested to be vertical perturbation, precipitation, and wind shear during S. furcifera immigration periods.
Journal Article
Population Seasonality: Will They Stay or Will They Go? A Case Study of the Sogatella furcifera (Hemiptera: Delphacidae)
2015
The whitebacked planthopper Sogatella furcifera (Horváth) (Hemiptera: Delphacidae) is one of the most destructive pests of rice in East and Southeast Asia. It is also a long-distance migratory insect and population size fluctuates frequently in these rice regions along the middle and lower Yangtze River. We analyzed the population seasonality of S.
furcifera based on field surveys, light trap catching, and meteorological factors. We found that many S.
furcifera were retained in local late rice in 2012, due to continuous rain and slightly windy weather conditions during the migration period. These results suggest that a new pattern of population fluctuation may occur where resident S.
furcifera are dispersed into a single medium rice during harvest period, then rebound and thrive in late rice when there are suitable temperatures in September. Although the residency of S.
furcifera in late rice fields in 2012 seems to be a special case, our findings suggest that S.
furcifera exhibit a type of facultative migration. Our research also illuminates studies of the migration events of S.
furcifera and benefits our understanding of the dynamics of S.
furcifera in Hunan Province.
Journal Article
Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice
2018
The brown planthopper (BPH) and white-backed planthopper (WBPH) are the most destructive insect pests of rice, and they pose serious threats to rice production throughout Asia. Thus, there are urgent needs to identify resistance-conferring genes and to breed planthopper-resistant rice varieties. Here we report the map-based cloning and functional analysis of
Bph6
, a gene that confers resistance to planthoppers in rice.
Bph6
encodes a previously uncharacterized protein that localizes to exocysts and interacts with the exocyst subunit OsEXO70E1.
Bph6
expression increases exocytosis and participates in cell wall maintenance and reinforcement. A coordinated cytokinin, salicylic acid and jasmonic acid signaling pathway is activated in
Bph6
-carrying plants, which display broad resistance to all tested BPH biotypes and to WBPH without sacrificing yield, as these plants were found to maintain a high level of performance in a field that was heavily infested with BPH. Our results suggest that a superior resistance gene that evolved long ago in a region where planthoppers are found year round could be very valuable for controlling agricultural insect pests.
The study reports map-based cloning and functional analysis of
Bph6
, which is associated with resistance to planthoppers in rice. BPH6 localizes to the exocyst and interacts with OsEXO70E1, and suppression of
OsExo70E1
expression decreases resistance in
Bph6
-NIL plants.
Journal Article
Cryptochromes and Hormone Signal Transduction under Near-Zero Magnetic Fields: New Clues to Magnetic Field Effects in a Rice Planthopper: e0132966
2015
Although there are considerable reports of magnetic field effects (MFE) on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF) to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i) CRY1 and CRY2 as putative magnetosensors, (ii) JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii) CYP307A1 in the ecdysone pathway, and (iv) reproduction-related Vitellogenin (Vg). The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF) in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE.
Journal Article