Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
55,665
result(s) for
"Soil contamination"
Sort by:
Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide
by
Trivedi, Pankaj
,
Makhalanyane, Thulani P.
,
Duran, Jorge
in
704/158
,
704/172
,
Antibiotic resistance
2023
Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing.
Liu et al. demonstrate that human-driven soil contamination in natural areas mirrors that in nearby urban greenspaces globally, and highlight the potential influence that soil contaminants have on ecosystem functions.
Journal Article
Rhizosphere Microbial Communities and Heavy Metals
by
Barra Caracciolo, Anna
,
Terenzi, Valentina
in
Abiotic stress
,
Agricultural ecosystems
,
Agriculture
2021
The rhizosphere is a microhabitat where there is an intense chemical dialogue between plants and microorganisms. The two coexist and develop synergistic actions, which can promote plants’ functions and productivity, but also their capacity to respond to stress conditions, including heavy metal (HM) contamination. If HMs are present in soils used for agriculture, there is a risk of metal uptake by edible plants with subsequent bioaccumulation in humans and animals and detrimental consequences for their health. Plant productivity can also be negatively affected. Many bacteria have defensive mechanisms for resisting heavy metals and, through various complex processes, can improve plant response to HM stress. Bacteria-plant synergic interactions in the rhizosphere, as a homeostatic ecosystem response to HM disturbance, are common in soil. However, this is hard to achieve in agroecosystems managed with traditional practices, because concentrating on maximizing crop yield does not make it possible to establish rhizosphere interactions. Improving knowledge of the complex interactions mediated by plant exudates and secondary metabolites can lead to nature-based solutions for plant health in HM contaminated soils. This paper reports the main ecotoxicological effects of HMs and the various compounds (including several secondary metabolites) produced by plant-microorganism holobionts for removing, immobilizing and containing toxic elements.
Journal Article
Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs
2017
Purpose
Previous studies show that application of biochar can reduce the bioavailability of heavy metals in soil. A plant growth experiment was carried out to evaluate the effect of tobacco stalk- and dead pig-derived biochars on the extractability and redistribution of cadmium (Cd) and zinc (Zn) in contaminated soil, and the impact on tobacco (
Nicotiana tabacum
L.) plant growth.
Materials and methods
The top 20 cm of a soil contaminated with Cd and Zn was used in this study. Biochars derived from tobacco stalk and dead pig were applied to the soil at four application rates (0, 1, 2.5, and 5 %), and tobacco plants were grown. After 80-days growth, the pH, electrical conductivity (EC), CaCl
2
-extractable heavy metals and fractions of heavy metals in soil samples, as well as the plant biomass and the concentrations of heavy metals in the plant were determined.
Results and discussion
The plant growth experiment demonstrated that tobacco stalk biochar and dead pig biochar significantly (
P
< 0.05) increased the pH, but had no significant effect on the electrical conductivity (EC) of the soil. The CaCl
2
-extractable Cd and Zn content decreased as the application rates increased. The concentration of extractable Cd and Zn decreased by 64.2 and 94.9 %, respectively, for the tobacco stalk biochar treatment, and 45.8 and 61.8 %, respectively, for the dead pig biochar treatment at 5 % application rate. After biochar addition, the exchangeable Cd was mainly transformed to fractions bound to carbonates and Fe-Mn oxides, while the Zn was immobilized mainly in the fraction bound to Fe-Mn oxides. Tobacco stalk biochar increased the tobacco plant biomass by 30.3 and 36.2 % for shoot and root, respectively at the 5 % application rate. Dead pig biochar increased the tobacco plant biomass by 43.5 and 40.9 % for shoot and root, respectively, at the 2.5 % application rate. Both biochars significantly (
P
< 0.05) decreased the Cd and Zn accumulation by tobacco plant.
Conclusions
As a soil amendment, tobacco stalk biochar was more effective at removing Cd, whereas dead pig biochar was more effective at removing Zn, and a higher application rate was more effective than a lower application rate. Overall, biochar derived from tobacco stalk was more effective, than dead pig biochar, at remediating soil contaminated with Cd and Zn, as well as promoting tobacco growth.
Journal Article
Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?
2016
A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi−
Glomus versiforme
(Gv) and
Rhizophagus intraradices
(Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of
Lonicera japonica
in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of
L. japonica
through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in
L. japonica
inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils.
Journal Article
Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils
2017
The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities (qm) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g−1, respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g−1, respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation.
Journal Article
Potential of Industrial Hemp for Phytoremediation of Heavy Metals
2022
The accumulation of anthropogenic heavy metals in soil is a major form of pollution. Such potentially toxic elements are nonbiodegradable and persist for many years as threats to human and environmental health. Traditional forms of remediation are costly and potentially damaging to the land. An alternative strategy is phytoremediation, where plants are used to capture metals from the environment. Industrial hemp (Cannabis sativa) is a promising candidate for phytoremediation. Hemp has deep roots and is tolerant to the accumulation of different metals. In addition, the crop biomass has many potential commercial uses after harvesting is completed. Furthermore, the recent availability of an annotated genome sequence provides a powerful tool for the bioengineering of C. sativa for better phytoremediation.
Journal Article
Phytoremediation effect of Medicago sativa colonized by Piriformospora indica in the phenanthrene and cadmium co-contaminated soil
2020
Background
The coexistence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals has deleterious effects on environmental quality. Few reports have studied the mechanisms of plant inoculation with
Piriformospora indica
to remediate PAH-metal co-contaminated soil by analyzing the chemical speciation of the contaminants. This study investigated the influence of the inoculation of
Medicago sativa
with
P. indica
to remediate soil co-contaminated with phenanthrene (a kind of PAH) and cadmium (a heavy metal) by analyzing plant growth, physiological parameters and chemical speciation in rhizosphere and nonrhizosphere soils.
Results
The presence of
P. indica
significantly increased plant tolerance, chlorophyll
a
, chlorophyll
b
, maximum quantum efficiency of PSII photochemistry and electron transport rate values in phenanthrene- and/or cadmium-contaminated soil.
P. indica
inoculation in
M. sativa
roots increased fluorescein diacetate activities in soils contaminated with phenanthrene, cadmium or both, especially in the nonrhizosphere. The presence of phenanthrene prevented the inoculated plant from accumulating cadmium to some extent, whereas the presence of cadmium did not prevent the degradation of phenanthrene in either the rhizosphere or the nonrhizosphere after
P. indica
colonization. Although the low bioavailability of cadmium in the rhizosphere restricted its transportation into the stem,
P. indica
colonization in plants effectively increased cadmium accumulation in roots in soil co-contaminated with cadmium and phenanthrene.
Conclusions
In conclusion, this work provides a theoretical basis for the use of
P. indica
combined with
M. sativa
for the remediation of PAH-metal co-contaminated soil.
Journal Article
Heavy Metal Contamination of Surface Sediments-Soil Adjoining the Largest Copper Mine Waste Dump in Central India Using Multivariate Pattern Recognition Techniques and Geo-Statistical Mapping
by
Tiwari, Onkar Nath
,
Shukla, Anoop Kant
,
Pradhan, Manoj
in
Absorption spectroscopy
,
Atomic absorption spectroscopy
,
Cation exchange
2024
This detailed study assessed heavy metal contamination of sediments/soil near central India’s largest copper mining area using 38 sampling sites within 10 km of the mine using atomic absorption spectroscopy. This study utilized multivariate pattern recognition methods, namely hierarchical clustering analysis (HCA) and principal component analysis (PCA), for source identification. Twelve parameters, i.e., copper (Cu), manganese (Mn), cobalt (Co), zinc (Zn), nickel (Ni), lead (Pb), organic matter (OM), cation exchange capacity (CEC), soil pH, distance (D), and elevation (E) were analyzed. The hierarchical cluster analysis (HCA) was used to analyze the sample sites with similar metal contamination and principal component analysis (PCA) was used to analyze the relationship between the parameters as well as to identify sources of heavy metal pollution. Three major pollution hotspots were detected by AHC and were classified as unpolluted/low pollution sites (UPS: mean concentration factor of 1.35 for Cu), highly polluted sites (HPS: mean concentration factor of 22 for Cu), and extremely polluted sites (EPS: mean concentration factor of 74 for Cu). PCA revealed three hidden factors/components, namely PC1 (explaining 38% of the variability), PC2 (18% of the variability), and PC3 (14% of the variability). Metals showed strong positive loading in PC1, explaining the highest variability. The mean content of Cu in soil/sediment samples was 502.526 mg/kg. The mean copper content was 10 times higher than the natural crustal value of 45mg/kg, indicating severe pollution in several sites around the study area. Mapping of copper contamination was conducted to reveal the spatial distribution of copper contamination using QGIS. This study exposes the heavy metal contamination level in surface sediments/soil and the effectiveness of pattern recognition techniques for the assessment of multivariate datasets in discerning spatial disparities and identifying the contamination causes.
Journal Article
Soil Contaminants and Their Removal through Surfactant-Enhanced Soil Remediation: A Comprehensive Review
by
Tiwari, Mehul
,
Tripathy, Divya Bajpai
in
Agricultural production
,
Asbestos
,
Atoms & subatomic particles
2023
This review provides a comprehensive analysis of the effectiveness of surfactants in enhancing the remediation of contaminated soils. The study examines recent and older research on the use of effluent treatment techniques combined with synthetic surface-active agents, bio-surfactants, and various categories of surfactants for soil reclamation purposes. The main purpose of this review is to evaluate the effectiveness of surfactants in enhancing the remediation of contaminated soils. The research question is to explore the mechanisms through which surfactants enhance soil remediation and to assess the potential benefits and limitations of surfactant-based remediation methods. This review was conducted through an extensive literature search of relevant articles published in scientific databases. The articles were selected based on their relevance to the topic and their methodological rigor. Types of possible soil pollutants and the requirements of specific surfactants were discussed. Structural relationships between pollutant and surfactants were described thoroughly. Extensive study revealed that surfactants have shown great potential in enhancing the remediation of contaminated soils. Surfactants can improve the solubility and mobility of hydrophobic contaminants and facilitate their removal from soil. However, the effectiveness of surfactant-based remediation methods depends on several factors, including the type of contaminant, the soil properties, and the surfactant concentration and type. Surfactant-enhanced soil remediation can be an effective and sustainable method for addressing soil contamination. However, the optimal conditions for using surfactants depend on the specific site characteristics and contaminant properties, and further research is needed to optimize the use of surfactants in soil remediation.
Journal Article
Efficacy of Enzymatically Induced Calcium Carbonate Precipitation in the Retention of Heavy Metal Ions
by
Mohammed, Syed Abu Sayeed
,
C. S. Chittoori, Bhaskar
,
Lateef, Mohammed Abdul
in
Adsorption
,
Aquatic plants
,
Bioremediation
2020
This study evaluated the efficacy of enzyme induced calcite precipitation (EICP) in restricting the mobility of heavy metals in soils. EICP is an environmentally friendly method that has wide ranging applications in the sustainable development of civil infrastructure. The study examined the desorption of three heavy metals from treated and untreated soils using ethylene diamine tetra-acetic acid (EDTA) and citric acid (C6H8O7) extractants under harsh conditions. Two natural soils spiked with cadmium (Cd), nickel (Ni), and lead (Pb) were studied in this research. The soils were treated with three types of enzyme solutions (ESs) to achieve EICP. A combination of urea of one molarity (M), 0.67 M calcium chloride, and urease enzyme (3 g/L) was mixed in deionized (DI) water to prepare enzyme solution 1 (ES1); non-fat milk powder (4 g/L) was added to ES1 to prepare enzyme solution 2 (ES2); and 0.37 M urea, 0.25 M calcium chloride, 0.85 g/L urease enzyme, and 4 g/L non-fat milk powder were mixed in DI water to prepare enzyme solution 3 (ES3). Ni, Cd, and Pb were added with load ratios of 50 and 100 mg/kg to both untreated and treated soils to study the effect of EICP on desorption rates of the heavy metals from soil. Desorption studies were performed after a curing period of 40 days. The curing period started after the soil samples were spiked with heavy metals. Soils treated with ESs were spiked with heavy metals after a curing period of 21 days and then further cured for 40 days. The amount of CaCO3 precipitated in the soil by the ESs was quantified using a gravimetric acid digestion test, which related the desorption of heavy metals to the amount of precipitated CaCO3. The order of desorption was as follows: Cd > Ni > Pb. It was observed that the average maximum removal efficiency of the untreated soil samples (irrespective of the load ratio and contaminants) was approximately 48% when extracted by EDTA and 46% when extracted by citric acid. The soil samples treated with ES2 exhibited average maximum removal efficiencies of 19% and 10% when extracted by EDTA and citric acid, respectively. It was observed that ES2 precipitated a maximum amount of calcium carbonate (CaCO3) when compared to ES1 and ES3 and retained the maximum amount of heavy metals in the soil by forming a CaCO3 shield on the heavy metals, thus decreasing their mobility. An approximate improvement of 30% in the retention of heavy metal ions was observed in soils treated with ESs when compared to untreated soil samples. Therefore, the study suggests that ESs can be an effective alternative in the remediation of soils contaminated with heavy metal ions.
Journal Article