Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,346
result(s) for
"Soil water storage"
Sort by:
Restoration of Degraded Grassland Significantly Improves Water Storage in Alpine Grasslands in the Qinghai-Tibet Plateau
2021
Alpine grassland has very important water conservation function. Grassland degradation seriously affects the water conservation function; moreover, there is little understanding of the change of water state during grassland restoration. Our study aims to bridge this gap and improve our understanding of changes in soil moisture during the restoration process. In this study, the water storage, vegetation, and meteorology of a non-degradation grassland (grazing intensity of 7.5 sheep/ha) and a severely degraded grassland (grazing intensity of 12–18 sheep/ha) were monitored in the Qinghai-Tibet Plateau for seven consecutive years. We used correlation, stepwise regression, and the boosted regression trees (BRT) model analyses, five environmental factors were considered to be the most important factors affecting water storage. The severely degraded grassland recovered by light grazing treatment for 7 years, with increases in biomass, litter, and vegetation cover, and a soil-water storage capacity 41.9% higher in 2018 compared to that in 2012. This increase in soil-water storage was primarily due to the increase in surface soil moisture content. The key factors that influenced water storage were listed in a decreasing order: air temperature, litter, soil heat flux, precipitation, and wind speed. Their percentage contributions to soil-water storage were 50.52, 24.02, 10.86, 7.82, and 6.77%, respectively. Current and future climate change threatens soil-water conservation in alpine grasslands; however, grassland restoration is an effective solution to improve the soil-water retention capacity in degraded grassland soils.
Journal Article
Rainfall–Runoff Processes and Modelling in Regions Characterized by Deficiency in Soil Water Storage
2019
The partial runoff is complicated in semi-arid and some semi-humid zones in terms of what the runoff generates in partial vertical positions. The partial runoff is highlighted by horizontal soil heterogeneity as well. How to identify the partial runoff and develop a variable threshold for runoff generation is a great difficulty and challenge. In this work, the partial runoff is identified by using a variable active runoff layer structure, and a variable soil water storage capacity is proposed to act as a threshold for runoff generation. A variable layer-based runoff model (VLRM) for simulating the complex partial runoff was therefore developed, using dual distribution curves for variable soil water storage capacity over basin. The VLRM is distinct in that the threshold for runoff generation is denoted by variable soil water storage capacity instead of infiltration capacity or constant soil water storage capacity. A series of flood events in two typical basins of North China are simulated by the model, and also by the Xinanjiang model. Results demonstrate that the new threshold performs well and the new model outperforms the Xinanjiang model. The approach improves current hydrological modelling for complex runoff in regions with large deficiencies in soil water storage.
Journal Article
Does water shortage generate water stress? An ecohydrological approach across Mediterranean plant communities
by
Volaire, Florence
,
Barkaoui, Karim
,
Cruz, Pablo
in
Biodiversity and Ecology
,
Biomass
,
biomass production
2017
Summary The interactions between hydrological and ecological processes are key issues to improve our predictions of ecosystem responses to increasing droughts. However, predicting the dynamics and the impacts of vegetation water stress remains challenging because of complex ecohydrological feedbacks. The ecohydrological optimality approach proposes that functional adjustments within plant communities may buffer the increase in vegetation water stress despite local water shortage. This study aimed to test whether vegetation water stress may be invariant across contrasting plant communities, reflecting possible optimality processes. We addressed the following question: does a lower soil water storage capacity under the same climate generate greater vegetation water stress over time? We hypothesized that vegetation water stress would be buffered around a low and constant level through the adjustment of vegetation biomass productivity net primary productivity (NPP), evapotranspiration (ET) and/or water‐use efficiency (WUE) in relation with local soil water storage capacity. We monitored 12 native plant communities distributed along a gradient of soil water storage capacity (ranging from 20 mm to 120 mm) during five successive years. Net primary productivity, ET, WUE as well as soil water dynamics were assessed and modelled for each plant community throughout the 5 years of study. Vegetation water stress was determined for each plant community as the deviation of between actual ET and their maximum ETm rate achieved under non‐limiting conditions. We found that NPP and ET were together proportionally related to local soil water storage capacity across the 5 years of study while WUE did not differ between plant communities. Vegetation water stress was found quite similar for all plant communities whatever the soil water storage capacity. These results suggested that vegetation water stress was strongly buffered by the community‐level plant growth rates and total water use along the soil gradient, but not by WUE. Our results suggest that stressful environments rarely exist for plant communities. A dynamic scaling relationship between NPP and ET may underpin the control of vegetation water stress over seasonal and pluriannual time‐scales. Such results could contribute to better understanding processes associated with ecohydrological optimality and improve the predictions of vegetation dynamics under increasing droughts. A lay summary is available for this article. Lay Summary
Journal Article
How Does Radial Growth of Water-Stressed Populations of European Beech (Fagus sylvatica L.) Trees Vary under Multiple Drought Events?
2021
European beech (Fagus sylvatica L.) trees are becoming vulnerable to drought, with a warming climate. Existing studies disagree on how radial growth varies in European beech in response to droughts. We aimed to find the impact of multiple droughts on beech trees’ annual radial growth at their ecological drought limit created by soil water availability in the forest. Besides, we quantified the influence of competition and canopy openness on the mean basal area growth of beech trees. We carried out this study in five near-natural temperate forests in three localities of Germany and Switzerland. We quantified available soil water storage capacity (AWC) in plots laid in the transition zone from oak to beech dominated forests. The plots were classified as ‘dry’ (AWC < 60 mL) and ‘less-dry’ (AWC > 60 mL). We performed dendroecological analyses starting from 1951 in continuous and discontinuous series to study the influence of climatic drought (i.e., precipitation-potential evapotranspiration) on the radial growth of beech trees in dry and less-dry plots. We used observed values for this analysis and did not use interpolated values from interpolated historical records in this study. We selected six drought events to study the resistance, recovery, and resilience of beech trees to drought at a discontinuous level. The radial growth was significantly higher in less-dry plots than dry plots. The increase in drought had reduced tree growth. Frequent climatic drought events resulted in more significant correlations, hence, increased the dependency of tree growth on AWC. We showed that the recovery and resilience to climatic drought were higher in trees in less-dry plots than dry plots, but it was the opposite for resistance. The resistance, recovery, and resilience of the trees were heterogeneous between the events of drought. Mean growth of beech trees (basal area increment) were negatively impacted by neighborhood competition and positively influenced by canopy openness. We emphasized that beech trees growing on soil with low AWC are at higher risk of growth decline. We concluded that changes in soil water conditions even at the microsite level could influence beech trees’ growth in their drought limit under the changing climate. Along with drought, neighborhood competition and lack of light can also reduce beech trees’ growth. This study will enrich the state of knowledge about the ongoing debate on the vulnerability of beech trees to drought in Europe.
Journal Article
A Daily Water Balance Model Based on the Distribution Function Unifying Probability Distributed Model and the SCS Curve Number Method
2022
A new daily water balance model is developed and tested in this paper. The new model has a similar model structure to the existing probability distributed rainfall runoff models (PDM), such as HyMOD. However, the model utilizes a new distribution function for soil water storage capacity, which leads to the SCS (Soil Conservation Service) curve number (CN) method when the initial soil water storage is set to zero. Therefore, the developed model is a unification of the PDM and CN methods and is called the PDM–CN model in this paper. Besides runoff modeling, the calculation of daily evaporation in the model is also dependent on the distribution function, since the spatial variability of soil water storage affects the catchment-scale evaporation. The generated runoff is partitioned into direct runoff and groundwater recharge, which are then routed through quick and slow storage tanks, respectively. Total discharge is the summation of quick flow from the quick storage tank and base flow from the slow storage tank. The new model with 5 parameters is applied to 92 catchments for simulating daily streamflow and evaporation and compared with AWMB, SACRAMENTO, and SIMHYD models. The performance of the model is slightly better than HyMOD but is not better compared with the 14-parameter model (SACRAMENTO) in the calibration, and does not perform as well in the validation period as the 7-parameter model (SIMHYD) in some areas, based on the NSE values. The linkage between the PDM–CN model and long-term water balance model is also presented, and a two-parameter mean annual water balance equation is derived from the proposed PDM–CN model.
Journal Article
Twenty-Year Spatiotemporal Variations of TWS over Mainland China Observed by GRACE and GRACE Follow-On Satellites
2023
Terrestrial water storage (TWS) is a pivotal component of the global water cycle, profoundly impacting water resource management, hazard monitoring, and agriculture production. The Gravity Recovery and Climate Experiment (GRACE) and its successor, the GRACE Follow-On (GFO), have furnished comprehensive monthly TWS data since April 2002. However, there are 35 months of missing data over the entire GRACE/GFO observational period. To address this gap, we developed an operational approach utilizing singular spectrum analysis and principal component analysis (SSA-PCA) to fill these missing data over mainland China. The algorithm was demonstrated with good performance in the Southwestern River Basin (SWB, correlation coefficient, CC: 0.71, RMSE: 6.27 cm), Yangtze River Basin (YTB, CC: 0.67, RMSE: 3.52 cm), and Songhua River Basin (SRB, CC: 0.66, RMSE: 7.63 cm). Leveraging two decades of continuous time-variable gravity data, we investigated the spatiotemporal variations in TWS across ten major Chinese basins. According to the results of GRACE/GFO, mainland China experienced an average annual TWS decline of 0.32 ± 0.06 cm, with the groundwater storage (GWS) decreasing by 0.54 ± 0.10 cm/yr. The most significant GWS depletion occurred in the Haihe River Basin (HRB) at −2.07 ± 0.10 cm/yr, significantly substantial (~1 cm/yr) depletions occurred in the Yellow River Basin (YRB), SRB, Huaihe River Basin (HHB), Liao-Luan River Basin (LRB), and Southwest River Basin (SWB), and moderate losses were recorded in the Northwest Basin (NWB, −0.34 ± 0.03 cm/yr) and Southeast River Basin (SEB, −0.24 ± 0.10 cm/yr). Furthermore, we identified that interannual TWS variations in ten basins of China were primarily driven by soil moisture water storage (SMS) anomalies, exhibiting consistently and relatively high correlations (CC > 0.60) and low root-mean-square errors (RMSE < 5 cm). Lastly, through the integration of GRACE/GFO and Global Land Data Assimilation System (GLDAS) data, we unraveled the contrasting water storage patterns between northern and southern China. Southern China experienced drought conditions, while northern China faced flooding during the 2020–2023 La Niña event, with the inverse pattern observed during the 2014–2016 El Niño event. This study fills in the missing data and quantifies water storage variations within mainland China, contributing to a deeper insight into climate change and its consequences on water resource management.
Journal Article
Decadal Changes in Soil Water Storage Characteristics Linked to Forest Management in a Steep Watershed
by
Sakai, Hiroshi
,
Koizumi, Akira
,
Yokoyama, Katsuhide
in
Analysis
,
available water capacity
,
Dams
2023
Soil water storage properties, which are affected by land management practices, alter the water balance and flow regimes in watersheds; thus, it is highly plausible to clarify the influence of such management practices on the water storage condition by analyzing the long-term variations in discharge. In this study, the changes in soil water storage characteristics of the Ogouchi Dam watershed, which had undergone intensive forest management through the decades, were investigated using two approaches. Reported results from the rainfall–runoff correlation analysis show a gradual and steady increase in the soil water storage capacity at weaker continuous-rainfall events, i.e., uninterrupted wet days accumulating less than 70 mm. Meanwhile, the second approach utilizing the parameter calibration in the SWAT discharge model illustrated a constant trend in the runoff potential and the high possibility of a steady improvement in the soil available water capacity. Overall, the established decadal trends were able to prove the capability of sustainable forest management, i.e., thinning, regeneration cutting, multi-layer planting, deer-prevention fences, and earth-retaining fences (lined felled trees), in improving the water conservation function of the catchment.
Journal Article
Experimental study of rock wool on the farmland soil erosion and crop growth of winter wheat and its comprehensive evaluation
by
Zhang, Xin
,
Feng, Jianming
,
Li, Wei
in
Agricultural land
,
Agricultural production
,
Climate change
2023
Introduction: Droughts and flooding occur frequently due to climate change and human activities, which have significantly affected the ecological environment of farmland and crop production. Rock wool (RW) has some properties like high porosity and water retention capacity, and it is widely used in green roofing and agricultural production to reduce flood and drought disaster. Methods: We set 24 artificial rainfall experiments to analyze the impact of RW on the farmland runoff, soil water storage capacity (SWSC), nitrogen and phosphorus loss and crop growth. Finally, the Critic-Entropy comprehensive evaluation method was used to select the best solution for RW embedding. Results: The result shows that RW could reduce the runoff by 49.6%–93.3%, and it made the SWSC increase by .2%–11% Vol in the 10–70 cm depth. During the runoff process, the concentration of nitrogen and phosphorus decreased with the increase of the RW volume, while the nitrogen and phosphorus loss reduced by 51.9%–96.6% and 72.4%–96.4% respectively when RW was buried in the farmland, so RW could effectively promote soil and water conservation. Finally, RW increased the plant biomass and yield by a maximum of 12.1% and 20.4% respectively due to the large retention of water and nutrients. Therefore, combined with the above experimental result, this study indicates that RW could obtain the best comprehensive benefit in the embedding volume of 536.73 m 3 /ha. Discussion: When the volume of RW embedding was too large, RW easily caused insufficient water storage in short-duration rainfall or irrigation, which made the RW unable to release water to alleviate the soil water deficit during the critical growth period, which may result in drought events being aggravated and crop yield reduced. Overall, this study is conducive to clarifying the comprehensive application effect of RW in agricultural production, pollution control, and urban landscape, and it provides an important basis for expanding its application field and promoting the stability of farmland ecosystems.
Journal Article
Importance of Temporal Scale in Assessing Changes in Soil-Water Storage in Apple Orchards on the Chinese Loess Plateau
2020
Knowledge of changes in soil-water storage (SWS) at multiple scales in apple orchards is important for formulating policies for the scientific management and sound planning of apple plantations on the Loess Plateau in China. In this study, we measured precipitation, partitioned evapotranspiration (ET) into canopy interception, transpiration, and soil evaporation, and calculated the changes in SWS using the water-balance method at multiple scales in two neighbouring apple orchards (8 and 18 years old) on the Loess Plateau from May to September in 2013, 2014, 2015, and 2016. The results showed that ET was consistently lower for the 8- than the 18-year-old orchard in each year at the same scale (p < 0.05). The changes in SWS differed between the two orchards at the same scale, but the trends of change were similar in each year. The trend of the change in SWS at the same scale differed amongst the years for both orchards. The maximum supply of water from soil reservoirs for the two orchards also differed at different scales in each year and was higher at a daily cumulative scale than a monthly and annual scale in 2013, 2014, and 2016. The daily cumulative scale was thus a more suitable scale for representing the maximum contribution of the soil reservoir to supply water for the growth of the orchards during the study periods. Changes in SWS at a daily cumulative scale should be considered when assessing the effect of apple orchards on regional soil reservoirs on the Loess Plateau or in other water-limited regions.
Journal Article
Biochar particle size, shape, and porosity act together to influence soil water properties
by
Gonnermann, Helge M.
,
Dugan, Brandon
,
Masiello, Caroline A.
in
Analysis
,
Atoms & subatomic particles
,
Biochemistry
2017
Many studies report that, under some circumstances, amending soil with biochar can improve field capacity and plant-available water. However, little is known about the mechanisms that control these improvements, making it challenging to predict when biochar will improve soil water properties. To develop a conceptual model explaining biochar's effects on soil hydrologic processes, we conducted a series of well constrained laboratory experiments using a sand matrix to test the effects of biochar particle size and porosity on soil water retention curves. We showed that biochar particle size affects soil water storage through changing pore space between particles (interpores) and by adding pores that are part of the biochar (intrapores). We used these experimental results to better understand how biochar intrapores and biochar particle shape control the observed changes in water retention when capillary pressure is the main component of soil water potential. We propose that biochar's intrapores increase water content of biochar-sand mixtures when soils are drier. When biochar-sand mixtures are wetter, biochar particles' elongated shape disrupts the packing of grains in the sandy matrix, increasing the volume between grains (interpores) available for water storage. These results imply that biochars with a high intraporosity and irregular shapes will most effectively increase water storage in coarse soils.
Journal Article