Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
154,482
result(s) for
"Soils Analysis."
Sort by:
A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses
2009
Acidobacteria are ubiquitous and abundant members of soil bacterial communities. However, an ecological understanding of this important phylum has remained elusive because its members have been difficult to culture and few molecular investigations have focused exclusively on this group. We generated an unprecedented number of acidobacterial DNA sequence data using pyrosequencing and clone libraries (39 707 and 1787 sequences, respectively) to characterize the relative abundance, diversity and composition of acidobacterial communities across a range of soil types. To gain insight into the ecological characteristics of acidobacterial taxa, we investigated the large-scale biogeographic patterns exhibited by acidobacterial communities, and related soil and site characteristics to acidobacterial community assemblage patterns. The 87 soils analyzed by pyrosequencing contained more than 8600 unique acidobacterial phylotypes (at the 97% sequence similarity level). One phylotype belonging to Acidobacteria subgroup 1, but not closely related to any cultured representatives, was particularly abundant, accounting for 7.4% of bacterial sequences and 17.6% of acidobacterial sequences, on average, across the soils. The abundance of Acidobacteria relative to other bacterial taxa was highly variable across the soils examined, but correlated strongly with soil pH (
R
=−0.80,
P
<0.001). Soil pH was also the best predictor of acidobacterial community composition, regardless of how the communities were characterized, and the relative abundances of the dominant Acidobacteria subgroups were readily predictable. Acidobacterial communities were more phylogenetically clustered as soil pH departed from neutrality, suggesting that pH is an effective habitat filter, restricting community membership to progressively more narrowly defined lineages as pH deviates from neutrality.
Journal Article
Soil contamination by trace elements and radioelements and related environmental risks in agricultural soils of the M’Dhilla Basin (southwestern Tunisia)
by
Moussaoui, Zouhour
,
Hamed, Younes
,
Hamzaoui-Azzaza, Fadoua
in
Abundance
,
Agricultural land
,
Agricultural pollution
2024
Agricultural soil contaminated by phosphogypsum pile stocked in plan air remains a major problem in M’Dhilla city southwestern of Tunisia. The present effort aimed to enhance the knowledge of trace elements and radioactivity abundance and to assess the corresponding environment. X-ray fluorescence spectroscopy was used to evaluate the trace elements, radioactive elements, and major element concentrations. Our finding revealed that the mean values of U and Th in all the soil profiles ranged from 0.283 to 2.875 mg.kg
−1
and from 0.797 to 1.491 mg.kg
−1
respectively. The statistical analyses indicated that uranium abundance has non-significant correlation with the most of trace metals; it shows a moderate correlated with Sr and inverse correlation with P
2
O
5
. Contamination factors indicate that the studied soil ranged from uncontaminated to significantly contaminated. Thus, the pollution load index values classify the sites from background values to high pollution sites. The findings of this study will help improve the environmental conditions of M’Dhilla city by addressing contamination issues through targeted interventions. The study’s findings highlight the importance of a periodic environmental monitoring such as soil remediation in the study area. This research fills a critical gap in the current understanding of contamination management in this region.
Journal Article
Key soil properties governing Cr(VI) retention in 16 natural soils: A comprehensive geochemical and statistical analysis
2025
Hexavalent Chromium (Cr(VI)) contamination in soils poses significant ecological risks due to its mobility and toxicity, with retention mechanisms governed by interactions between soil properties and Cr(VI). However, the quantitative roles of key soil parameters in Cr(VI) retention remain poorly resolved, particularly across diverse soil types. This study investigated Cr(VI) retention behaviors in 16 Chinese soils (15 types) through batch experiments, isothermal adsorption model, correlation analysis and path analysis. The results showed that the retention of Cr(VI) in acidic soils was significantly higher than in alkaline soils. Acidic soils (pH < 5.4) with higher concentrations of exchangeable Fe(II) (Exch-Fe(II)) exhibited strong Cr(VI) holding capabilities,while Alkaline soils (pH > 7.3) with highest content of CaCO 3 show negligible Cr(VI) reactions.Cr(VI) retention was high at soil pH values below approximately 5.5, but declined sharply at higher pH values. The Langmuir model was only suitable for describing acidic soils (pH < 5.4), while the Freundlich equation was applicable to all soils. Correlation analysis revealed that soil pH, the content of soil organic matters(SOM), Exch-Fe(II), complexed iron (Com-Fe), and clay were significantly related to the Cr(VI) retention ( p < 0.01), whereas the CaCO 3 content was negatively related to the Cr(VI) retention ( p < 0.05).Path analysis revealed that soil pH was the most important direct factor, followed by Exch-Fe(II), Com-Fe, clay, in determining Cr(VI) retention in natural soil. CEC and CaCO 3 content had only limited directly effects on the Cr(VI) retention. Additionally, The content of SOM, Amorphous iron oxides(Amo-Fe), and Easily reducible manganese(Er-Mn) content had little directly effect on Cr(VI) retention. To validate these findings, Cr(VI) retention was measured in all soils after adjusting their pH to 4.3, 6, and 8. The results highlighted soil pH and Exch-Fe(II) content were the most decisive factors for evaluating Cr(VI) retention in natrual soils,whereas SOM content was an unreliable parameter for assessing this process.
Journal Article
Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients
by
Ramirez, Kelly S
,
Knight, Rob
,
Fierer, Noah
in
Abundance
,
Anthropogenic factors
,
Bacteria - classification
2012
Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the
Proteobacteria
and
Bacteroidetes
phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly
Acidobacteria
) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of
K
-selected with
r
-selected plant species with elevated N.
Journal Article
Investigation of radioactivity and heavy metal levels in soil samples from neutral and vegetation land of Punjab, India
by
Kaur, Sarabjot
,
Kaintura, Sanjeet S.
,
Thakur, Swati
in
Anthropogenic factors
,
Arsenic
,
Atmospheric Protection/Air Quality Control/Air Pollution
2024
In this work, radioactivity investigations of soil samples from neutral and agricultural sites in Punjab (India) have been carried out to study the impact of land use patterns. Analyzing soil samples radiological, mineralogical, and physicochemical attributes has employed state-of-the-art techniques. The mean activity concentration of
238
U/
226
Ra,
232
Th,
40
K,
235
U, and
137
Cs, measured using a carbon fiber endcap p-type HPGe detector, in neutral land was observed as 58.03, 83.95, 445.18, 2.83, and 1.16 Bq kg
−1
, respectively. However, in vegetation land, it was found to be 40.07, 64.68, 596.74, 2.26, and 1.90 Bq kg
−1
, respectively. In the detailed activity analysis, radium equivalent (Ra
eq
) radioactivity is in the safe prescribed limit of 370 Bq kg
−1
for all investigated soil samples. However, the dosimetric investigations revealed that the outdoor absorbed gamma dose rate (96.08 nGy h
−1
) and consequent annual effective dose rate (0.12 mSv y
−1
) for neutral land and the gamma dose rate (82.46 nGy h
−1
) and subsequent annual effective dose rate (0.10 mSv y
−1
) for vegetation land marginally exceeded the global average. The soil’s physicochemical parameters (pH, EC, and porosity) from both sites were measured, and their correlations with radionuclides were analyzed. Various heavy metals of health concern, namely, chromium (Cr), arsenic (As), copper (Cu), cobalt (Co), cadmium (Cd), lead (Pb), mercury (Hg), selenium (Se), and zinc (Zn), were also evaluated in soil samples using Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). Pollution Load Index (PLI) and Ecological Risk Index (RI) revealed that vegetation land was more anthropogenically contaminated than neutral land, with maximum contamination from Hg and As.
Journal Article
Evaluating the impacts of microplastics on agricultural soil physical, chemical properties, and toxic metal availability: An emerging concern for sustainable agriculture
by
Nice, Md. Simoon
,
Munna, Asadullah
,
Hossain, Md. Ripon
in
Agricultural land
,
Agricultural productivity
,
Agricultural research
2025
Microplastics (MPs) are an emerging environmental issue that might endanger the health of agricultural soil. Even though several research on the particular toxicity of MPs to species have been carried out, there is little information on MPs’ impacts on soil physicochemical properties and heavy metals (HMs) availability of HMs contaminated and without contaminated soils. This study examined the changes in soil characteristics for both HMs contaminated and without contaminated soils by five distinct MPs, including Polyethylene (PE), Polyethylene terephthalate (PET), Polystyrene Foam (PS), Polyamide (PA), and a combination of these four types of MPs (Mixed MPs), at two different concentrations (0.2% and 1%; w/w), where soil incubation experiments were setup for this studies and the standard analytical techniques employed to measure soil characteristics and toxic metal availability. After the ending of soil incubation studies (90 days), significant changes have been observed for physicochemical properties [bulk density, porosity, water holding capacity, pH, electrical conductivity (EC), organic carbon (OC), and organic matter (OM)]. The soil nutrients change in descending order was found as NH 4 + -N> PO 4 3+ > Na > Ca > NO 3 - > Mg for lower concentrations of MPs compared to higher concentrations. The HMs availability is reducing with increasing MPs concentration and the descending order for metal availability was as follows Pb > Zn > Cd > Cr > Cu > Ni. Based on MP type, the following descending order of MPs PS > Mix (MPs) > PA > PET > PE, respectively act as a soil properties influencer. Usually, effects were reliant on MPs’ category and concentrations. Finally, this study concludes that MPs may modify metal movements, and soil quality; consequently, a possible threat will be created for soil health.
Journal Article
Biological assessment and radiological impact in Keana, North Central Nigeria: environmental implication and metabolites production
by
Orole, Olukayode Olugbenga
,
Adewumi, Taiwo
,
Adefolalu, Adedotun
in
Acids
,
Actinobacteria
,
Alcohols
2024
The objective of the research was to examine microbial characteristics, metabolites produced, and the potential radiological risks present in mining soils located in Keana, North Central Nigeria. Soil samples were collected from various locations within Keana, Nasarawa State. Bacterial isolation was carried out, and molecular techniques were employed to characterize the bacteria found in the collected soil samples. Additionally, the susceptibility of these isolates to antibiotics was determined, and the bacteria screened for their ability to produce metabolites. The isolated bacteria were classified into three groups: Actinobacteria, Firmicutes, and Proteobacteria. The analysis of the spectra revealed that 1595 compounds were produced, including carboxylic acids, nitro compounds, aldehydes, anhydrides, esters, ketones, amides, phenols, alcohols, alkanes, alkenes, alkynes, and arenes. Some of the metabolites produced were oleic acid, 1,3-dioxolane, linoelaidic acid and oleic acid, 1-nonadecene, butylated hydroxytoluene, diisooctyl phthalate, bis(2-ethylhexyl) phthalate among others, and 1,2-benzenedicarboxylic acid (85.32%) as the most produced metabolite. Among the antibiotics tested, levofloxacin and ciprofloxacin exhibited the strongest antibacterial properties against the isolates. Airborne gamma-ray spectrometry analysis identified elevated levels of potassium, thorium, and uranium in the soils, indicating potential environmental hazards. However, no significant correlation was found between the presence of bacteria and radioactive elements. These findings emphasize the importance of comprehensive environmental monitoring in Keana to address potential health risks associated with microbial contamination and radioactive materials. Additionally, the study highlighted the role of microbial diversity in Keana soils in promoting the production of secondary metabolites with potential applications in pharmaceutical and industrial sectors..
Journal Article
A Step Forward in Hybrid Soil Laboratory Analysis: Merging Chemometric Corrections, Protocols and Data-Driven Methods
by
Kochinki, Viviane Cristina Vivian
,
Dor, Eyal Ben
,
Rosas, Jorge Tadeu Fim
in
Chemical sensors
,
Data acquisition
,
Data analysis
2024
The need to maintain soil health and produce more food worldwide has increased, and soil analysis is essential for its management. Although spectroscopy has emerged as an important tool, it is important to focus primarily on predictive modeling procedures rather than specific protocols. This article aims to contribute to a routine work sequence in a hybrid laboratory that seeks to provide the best data for its users. In this study, 18,730 soil samples from the state of Paraná, Brazil, were analyzed using three different laboratories, sensors and geometries for data acquisition. Thirty soil properties were analyzed, some using different chemical methodologies for comparison purposes. After a spectral reading, two literary protocols were applied, and the final prediction results were observed. We applied cubist models, which were the best for our population. The combination of different spectral analysis systems, with a standardized protocol using LB for the ISS detection of discrepant samples, was shown to significantly improve the accuracy of predictions for 21 of the 30 soil properties analyzed, highlighting the importance of choosing the extraction methodology and improving data quality, which have a significant impact on laboratory analyses, reaffirming spectroscopy as an essential tool for the efficient and sustainable management of soil resources.
Journal Article